文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Advancements in the Application of the Fenton Reaction in the Cancer Microenvironment.

作者信息

Ou Rile, Aodeng Gerile, Ai Jun

机构信息

Inner Mongolia Key Laboratory of Environmental Chemistry, College of Chemistry and Enviromental Science, Inner Mongolia Normal University, 81 Zhaowudalu, Hohhot 010022, China.

出版信息

Pharmaceutics. 2023 Sep 18;15(9):2337. doi: 10.3390/pharmaceutics15092337.


DOI:10.3390/pharmaceutics15092337
PMID:37765305
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10536994/
Abstract

Cancer is a complex and multifaceted disease that continues to be a global health challenge. It exerts a tremendous burden on individuals, families, healthcare systems, and society as a whole. To mitigate the impact of cancer, concerted efforts and collaboration on a global scale are essential. This includes strengthening preventive measures, promoting early detection, and advancing effective treatment strategies. In the field of cancer treatment, researchers and clinicians are constantly seeking new approaches and technologies to improve therapeutic outcomes and minimize adverse effects. One promising avenue of investigation is the utilization of the Fenton reaction, a chemical process that involves the generation of highly reactive hydroxyl radicals (·OH) through the interaction of hydrogen peroxide (HO) with ferrous ions (Fe). The generated ·OH radicals possess strong oxidative properties, which can lead to the selective destruction of cancer cells. In recent years, researchers have successfully introduced the Fenton reaction into the cancer microenvironment through the application of nanotechnology, such as polymer nanoparticles and light-responsive nanoparticles. This article reviews the progress of the application of the Fenton reaction, catalyzed by polymer nanoparticles and light-responsive nanoparticles, in the cancer microenvironment, as well as the potential applications and future development directions of the Fenton reaction in the field of tumor treatment.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/df56/10536994/e5a793634e99/pharmaceutics-15-02337-g015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/df56/10536994/250d311cf06c/pharmaceutics-15-02337-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/df56/10536994/f88e3552a4df/pharmaceutics-15-02337-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/df56/10536994/e690a6a36a45/pharmaceutics-15-02337-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/df56/10536994/69ab802f962a/pharmaceutics-15-02337-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/df56/10536994/a8f328b00bd5/pharmaceutics-15-02337-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/df56/10536994/39bb7b16d1dd/pharmaceutics-15-02337-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/df56/10536994/e40ca942bdbc/pharmaceutics-15-02337-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/df56/10536994/1db3b916ed1a/pharmaceutics-15-02337-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/df56/10536994/c9758ceb88bc/pharmaceutics-15-02337-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/df56/10536994/e19bb9f050d2/pharmaceutics-15-02337-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/df56/10536994/f15725392938/pharmaceutics-15-02337-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/df56/10536994/dc2bef28afa3/pharmaceutics-15-02337-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/df56/10536994/2bbeede68528/pharmaceutics-15-02337-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/df56/10536994/ad1e239cb00b/pharmaceutics-15-02337-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/df56/10536994/e5a793634e99/pharmaceutics-15-02337-g015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/df56/10536994/250d311cf06c/pharmaceutics-15-02337-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/df56/10536994/f88e3552a4df/pharmaceutics-15-02337-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/df56/10536994/e690a6a36a45/pharmaceutics-15-02337-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/df56/10536994/69ab802f962a/pharmaceutics-15-02337-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/df56/10536994/a8f328b00bd5/pharmaceutics-15-02337-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/df56/10536994/39bb7b16d1dd/pharmaceutics-15-02337-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/df56/10536994/e40ca942bdbc/pharmaceutics-15-02337-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/df56/10536994/1db3b916ed1a/pharmaceutics-15-02337-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/df56/10536994/c9758ceb88bc/pharmaceutics-15-02337-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/df56/10536994/e19bb9f050d2/pharmaceutics-15-02337-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/df56/10536994/f15725392938/pharmaceutics-15-02337-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/df56/10536994/dc2bef28afa3/pharmaceutics-15-02337-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/df56/10536994/2bbeede68528/pharmaceutics-15-02337-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/df56/10536994/ad1e239cb00b/pharmaceutics-15-02337-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/df56/10536994/e5a793634e99/pharmaceutics-15-02337-g015.jpg

相似文献

[1]
Advancements in the Application of the Fenton Reaction in the Cancer Microenvironment.

Pharmaceutics. 2023-9-18

[2]
Research Progress on Improving the Efficiency of CDT by Exacerbating Tumor Acidification.

Int J Nanomedicine. 2022

[3]
Novel Tumor-Microenvironment-Based Sequential Catalytic Therapy by Fe(II)-Engineered Polydopamine Nanoparticles.

ACS Appl Mater Interfaces. 2019-11-11

[4]
Overcoming Acidic HO/Fe(II/III) Redox-Induced Low HO Utilization Efficiency by Carbon Quantum Dots Fenton-like Catalysis.

Environ Sci Technol. 2022-2-15

[5]
Harnessing inorganic nanomaterials for chemodynamic cancer therapy.

Nanomedicine (Lond). 2022-10

[6]
A chemodynamic nanoenzyme with highly efficient Fenton reaction for cancer therapy.

Biomed Mater. 2023-8-24

[7]
Near infrared-assisted Fenton reaction for tumor-specific and mitochondrial DNA-targeted photochemotherapy.

Biomaterials. 2017-6-23

[8]
Catalase-Modulated Heterogeneous Fenton Reaction for Selective Cancer Cell Eradication: SnFeO Nanocrystals as an Effective Reagent for Treating Lung Cancer Cells.

ACS Appl Mater Interfaces. 2017-1-5

[9]
Iron ion and sulfasalazine-loaded polydopamine nanoparticles for Fenton reaction and glutathione peroxidase 4 inactivation for enhanced cancer ferrotherapy.

Acta Biomater. 2022-6

[10]
Interfacial mechanisms of heterogeneous Fenton reactions catalyzed by iron-based materials: A review.

J Environ Sci (China). 2016-1

引用本文的文献

[1]
Immune-Modulating Dual-Targeted Nanomaterials for Low-Temperature Photothermal-Photodynamic-Chemodynamic Therapy of Osteosarcoma Targeting Tumor and Endothelial Cells.

ACS Nano. 2025-9-2

[2]
JAK/STAT signaling as a key regulator of ferroptosis: mechanisms and therapeutic potentials in cancer and diseases.

Cancer Cell Int. 2025-3-7

[3]
Noncanonical inhibition of topoisomerase II alpha by oxidative stress metabolites.

Redox Biol. 2025-3

[4]
Two-Dimensional MXenes: Innovative Materials for Efficient Thermal Management and Safety Solutions.

Research (Wash D C). 2024-12-19

[5]
Biomimetic Targeted Co-Delivery System Engineered from Genomic Insights for Precision Treatment of Osteosarcoma.

Adv Sci (Weinh). 2025-1

[6]
Recent developments in two-dimensional molybdenum disulfide-based multimodal cancer theranostics.

J Nanobiotechnology. 2024-8-28

[7]
Metabolic reprogramming of poly(morpho)nuclear giant cells determines glioblastoma recovery from doxorubicin-induced stress.

J Transl Med. 2024-8-12

[8]
In Vivo Biocompatibility Study on Functional Nanostructures Containing Bioactive Glass and Plant Extracts for Implantology.

Int J Mol Sci. 2024-4-11

本文引用的文献

[1]
Designed synthesis of prussian blue@Cu-doped zinc phosphate nanocomposites for chemo/chemodynamic/photothermal combined cancer therapy.

J Mater Chem B. 2023-7-12

[2]
Novel targets for gastric cancer: The tumor microenvironment (TME), N6-methyladenosine (m6A), pyroptosis, autophagy, ferroptosis and cuproptosis.

Biomed Pharmacother. 2023-7

[3]
Dual-inhibition of lactate metabolism and Prussian blue-mediated radical generation for enhanced chemodynamic therapy and antimetastatic effect.

Nanoscale. 2023-5-25

[4]
Polydopamine nanoparticles coated with a metal-polyphenol network for enhanced photothermal/chemodynamic cancer combination therapy.

Int J Biol Macromol. 2023-5-31

[5]
Proton pump inhibitor-enhanced nanocatalytic ferroptosis induction for stimuli-responsive dual-modal molecular imaging guided cancer radiosensitization.

Acta Biomater. 2023-5

[6]
Enzyme-catalyzed synthesis of selenium-doped manganese phosphate for synergistic therapy of drug-resistant colorectal cancer.

J Nanobiotechnology. 2023-3-1

[7]
Hydrogen peroxide and iron ions can modulate lipid peroxidation, apoptosis, and the cell cycle, but do not have a significant effect on DNA double-strand break.

Biochem Biophys Res Commun. 2023-4-9

[8]
A mesoporous MnO-based nanoplatform with near infrared light-controlled nitric oxide delivery and tumor microenvironment modulation for enhanced antitumor therapy.

J Inorg Biochem. 2023-4

[9]
Radial extracorporeal shock wave promotes the enhanced permeability and retention effect to reinforce cancer nanothermotherapeutics.

Sci Bull (Beijing). 2019-5-30

[10]
Laser-Induced Combinatorial Chemotherapeutic, Chemodynamic, and Photothermal Therapy for Hepatocellular Carcinoma Based on Oxaliplatin-Loaded Metal-Organic Frameworks.

ACS Appl Mater Interfaces. 2023-1-25

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索