Suppr超能文献

利用机器学习从监测数据的抗生素敏感性测试结果预测抗生素耐药性。

Prediction of antibiotic resistance from antibiotic susceptibility testing results from surveillance data using machine learning.

作者信息

Valavarasu Swetha, Sangu Yasaswini, Mahapatra Tanmaya

机构信息

Department of Computer Science and Information Systems, Birla Institute of Technology and Science, Pilani, Pilani Campus, Vidya Vihar, Pilani, 333031, Rajasthan, India.

出版信息

Sci Rep. 2025 Aug 20;15(1):30509. doi: 10.1038/s41598-025-14078-w.

Abstract

Antimicrobial resistance is a growing global health threat, and artificial intelligence offers a promising avenue for developing advanced tools to address this challenge. In this study, we applied various machine learning techniques to predict bacterial antibiotic resistance using the Pfizer ATLAS Antibiotics dataset. This comprehensive dataset includes patient demographic data, sample collection details, antibiotic susceptibility test results, and resistance phenotypes for 917,049 bacterial isolates. The dataset was divided into two subsets: Phenotype-Only and Phenotype + Genotype, excluding and including 589,998 isolates with genotype data, respectively. Both subsets underwent exploratory data analysis, preprocessing, machine learning model training, validation, and optimization. XGBoost consistently outperformed other models, achieving AUC values of 0.96 and 0.95 for the Phenotype-Only and Phenotype + Genotype sets, respectively. Hyperparameter tuning yielded slight accuracy improvements, while data balancing techniques notably increased recall. Across all models, the antibiotic used emerged as the most influential feature in predicting resistance outcomes. The SHAP summary plots generated provide insights into model interpretability. Our findings provide valuable insights into global AMR patterns and demonstrate the potential of AI-driven approaches for resistance prediction to help inform clinical decision-making and support the formulation of effective AMR mitigation policies, subject to the availability of highly granular datasets.

摘要

抗生素耐药性是一个日益严重的全球健康威胁,而人工智能为开发应对这一挑战的先进工具提供了一条有前景的途径。在本研究中,我们应用了各种机器学习技术,使用辉瑞抗生素数据集预测细菌的抗生素耐药性。这个综合数据集包括患者人口统计学数据、样本采集细节、抗生素敏感性测试结果以及917,049株细菌分离株的耐药表型。该数据集被分为两个子集:仅表型子集和表型+基因型子集,分别排除和包含589,998株有基因型数据的分离株。两个子集都进行了探索性数据分析、预处理、机器学习模型训练、验证和优化。XGBoost始终优于其他模型,仅表型集和表型+基因型集的AUC值分别达到0.96和0.95。超参数调整带来了轻微的准确率提升,而数据平衡技术显著提高了召回率。在所有模型中,所使用的抗生素成为预测耐药结果中最具影响力的特征。生成的SHAP摘要图为模型可解释性提供了见解。我们的研究结果为全球抗生素耐药模式提供了有价值的见解,并证明了人工智能驱动的耐药性预测方法在为临床决策提供信息以及支持制定有效的抗生素耐药缓解政策方面的潜力,但前提是要有高度细化的数据集。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验