Awadallah Mohammed A, Al-Betar Mohammed Azmi, Braik Malik, Abu Zitar Raed, Assaleh Khaled, Alkoffash Mahmud, Shambour Qusai Yousef
Department of Computer Science, Al-Aqsa University, P.O. Box 4051, Gaza, Palestine.
Artificial Intelligence Research Center (AIRC), Ajman University, P.O.Box 346, Ajman, UAE.
Sci Rep. 2025 Aug 20;15(1):30539. doi: 10.1038/s41598-025-16208-w.
This paper presents a hybrid version of the Salp Swarm Algorithm (SSA) for Economic Load Dispatch (ELD) problems with severe constraints. The Adaptive β-hill climbing optimizer (AβHCO) ais hybridized with a newly developed local search method with SSA as a new operator. This hybridization scheme is known as a memetic algorithm, where SSA serves as a natural selection agent (general refinement) in a genotype environment, while AβHCO serves as a culture selection agent (local refinement) in a phenotype environment. In other words, SSA acts as a gene encoding in biology, while AβHCO serves as a meme in a cultural context. In an intelligent optimization environment, gene and meme notations from natural biology and cultural selection act as search agents to achieve generality (gene) and problem specificity (meme). ELD is a crucial optimization problem in electrical engineering, and it is non-convex, multi-modal, and severely constrained. The proposed method, called MSSA, evaluates several types of ELD problems that differ in the constraints adopted. The first problem is addressed by considering two types of constraints related to load balance and output. It includes five practical cases of ELD generators that vary in number of units and load requirements: a three-unit generator with a capacity of 850 MW (3UG-850 MW), a thirteen-unit generator with a capacity of 1800 MW (13UG-1800 MW), a thirteen-unit generator with a capacity of 2520 MW (13UG-2520 MW), a forty-unit generator with a capacity of 10500 MW (40UG-10500 MW), and a large-scale generator with a capacity of 80 units of 21000 MW (80UG-21000 MW). Two additional constraints-restricted operating zones and ramp rate limits-are used to address the second problem. A six-unit generator with a capacity of 1,263 MW (6 UG-1,263 MW) and a fifteen-unit generator with a capacity of 2,630 MW (40 UG-2,630 MW) are two real-world cases discussed. Compared with other existing algorithms, the comparative results demonstrate the feasibility and usefulness of the proposed MSSA algorithm.
本文提出了一种用于求解具有严格约束条件的经济负荷调度(ELD)问题的混合版鹈鹕群算法(SSA)。自适应β-爬山优化器(AβHCO)与一种新开发的局部搜索方法进行了杂交,并将SSA作为一个新算子。这种杂交方案被称为混合算法,其中SSA在基因型环境中作为自然选择代理(全局优化),而AβHCO在表型环境中作为文化选择代理(局部优化)。换句话说,SSA在生物学中充当基因编码,而AβHCO在文化背景中充当文化基因。在智能优化环境中,来自自然生物学和文化选择的基因和文化基因符号充当搜索代理,以实现通用性(基因)和问题特异性(文化基因)。ELD是电气工程中的一个关键优化问题,它是非凸、多模态且具有严格约束的。所提出的方法称为MSSA,评估了几种在采用的约束条件上有所不同的ELD问题。第一个问题通过考虑与负荷平衡和输出相关的两种约束条件来解决。它包括五种不同机组数量和负荷需求的ELD发电机实际案例:一台容量为850兆瓦的三机组发电机(3UG - 850兆瓦)、一台容量为1800兆瓦的十三机组发电机(13UG - 1800兆瓦)、一台容量为2520兆瓦的十三机组发电机(13UG - 2520兆瓦)、一台容量为10500兆瓦的四十机组发电机(40UG - 10500兆瓦)以及一台容量为21000兆瓦的80机组大型发电机(80UG - 21000兆瓦)。另外两个约束条件——受限运行区域和爬坡速率限制——用于解决第二个问题。讨论了两个实际案例,一个是容量为1263兆瓦的六机组发电机(6 UG - 1263兆瓦),另一个是容量为2630兆瓦的十五机组发电机(40 UG - 2630兆瓦)。与其他现有算法相比,比较结果证明了所提出的MSSA算法的可行性和实用性。