He Guang, Wang Weijiao, Chen Gao, Xie Yongchao, Parks Jerry M, Davin Megan E, Hettich Robert L, Konstantinidis Konstantinos T, Löffler Frank E
Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, TN, USA.
Department of Biosystems Engineering and Soil Science, University of Tennessee, Knoxville, TN, USA.
Nature. 2025 Aug 20. doi: 10.1038/s41586-025-09401-4.
Nitrous oxide (NO), a driver of global warming and climate change, has reached unprecedented concentrations in Earth's atmosphere. Current NO sources outpace NO sinks, emphasizing the need for comprehensive understanding of processes that consume NO. Microbes that express the enzyme NO reductase (NOR) convert NO to climate change-neutral dinitrogen (N). Known NORs belong to the canonical clade I and clade II NosZ reductases and are considered key enzymes for NO reduction. Here we report a previously unrecognized protein family with a role in NO reduction, clade III lactonase-type NOR (L-NOR), which diverges in sequence from canonical NosZ but conserves three-dimensional protein structural features. Integrated physiological, metagenomic, proteomic and structural modelling studies demonstrate that L-NORs catalyse NO reduction. L-NOR genes occur in several phyla, predominantly in uncultured taxa with broad geographic distribution. Our findings expand the known diversity of NORs and implicate previously unrecognized taxa (for example, Nitrospinota) in NO consumption. The expansion of NOR diversity and the identification of a novel type of catalyst for NO reduction advances the understanding of NO sinks, has implications for greenhouse gas emission and climate change modelling, and expands opportunities for innovative biotechnologies aimed at curbing NO emissions.
一氧化二氮(NO)是全球变暖和气候变化的一个驱动因素,已在地球大气中达到前所未有的浓度。当前NO的来源超过了其汇,这凸显了全面了解消耗NO的过程的必要性。表达NO还原酶(NOR)的微生物将NO转化为对气候变化呈中性的氮气(N₂)。已知的NOR属于典型的I类和II类NosZ还原酶,被认为是NO还原的关键酶。在此,我们报告了一个以前未被认识的在NO还原中起作用的蛋白质家族,即III类内酯酶型NOR(L-NOR),其序列与典型的NosZ不同,但保留了三维蛋白质结构特征。综合的生理学、宏基因组学、蛋白质组学和结构建模研究表明,L-NOR催化NO还原。L-NOR基因存在于几个门中,主要存在于地理分布广泛的未培养类群中。我们的发现扩展了已知的NOR多样性,并表明以前未被认识的类群(如硝化螺旋菌门)参与了NO的消耗。NOR多样性的扩展以及新型NO还原催化剂的鉴定推进了对NO汇的理解,对温室气体排放和气候变化建模具有影响,并为旨在抑制NO排放的创新生物技术拓展了机会。