Esteki Mohammad Hadi, Eames Ian, Moeendarbary Emad
Department of Mechanical Engineering University College London Torrington Place London WC1E 7JE UK.
Department of Mechanical Engineering Isfahan University of Technology Isfahan 8415683111 Iran.
Small Sci. 2025 May 30;5(8):2400239. doi: 10.1002/smsc.202400239. eCollection 2025 Aug.
Despite numerous studies of droplet impact onto substrates, the splashing dynamics of droplets on biological material surfaces and its implications for infection transmission have rarely been studied. It is hypothesized that the splashing mechanism is influenced by the droplet size, the impact velocity, and the substrate wettability and morphology. The transmission of contamination from initial droplets or liquid films to biofilms upon impact is experimentally investigated. Splashing mechanisms involving biological droplets (e.g., water, urine, blood, and saliva) on a range of biological substrates (e.g., bone, meat, eye, skin, hair, nail, and tooth) and medical surfaces across a range of droplet velocities are comparatively analyzed. The study demonstrates that contaminants located in either an initial droplet or a liquid biofilm can be transmitted by splashing when the droplet impacts onto the biofilm. The Weber number, a descriptor of secondary droplet splashing, expressed as a function of the surface roughness ( ) is considered. For a droplet of radius , the prominence of the surface curvature ( ) is highlighted through comprehensive experimentation, underscoring the importance of using tailored surface materials within clinical environments.Developing advanced biomaterials and designs can thus help reduce droplet splashing and promote safer medical procedures.
尽管对液滴撞击基底已有大量研究,但液滴在生物材料表面的飞溅动力学及其对感染传播的影响却鲜有研究。据推测,飞溅机制受液滴大小、撞击速度以及基底的润湿性和形态影响。通过实验研究了撞击时初始液滴或液膜中的污染物向生物膜的传播。对一系列生物基底(如骨骼、肉类、眼睛、皮肤、毛发、指甲和牙齿)以及医疗表面上,不同液滴速度下涉及生物液滴(如水、尿液、血液和唾液)的飞溅机制进行了比较分析。该研究表明,当液滴撞击生物膜时,初始液滴或液体生物膜中的污染物可通过飞溅传播。考虑了作为表面粗糙度( )函数表示的韦伯数,它是二次液滴飞溅的一个描述参数。对于半径为 的液滴,通过全面实验突出了表面曲率( )的重要性,强调了在临床环境中使用定制表面材料的重要性。因此,开发先进的生物材料和设计有助于减少液滴飞溅并促进更安全的医疗程序。