Geng Shu, Fan Qingqing, Lin Kang, Mazur Federico, Chandrawati Rona
School of Chemical Engineering and Australian Centre for Nanomedicine (ACN) The University of New South Wales (UNSW Sydney) Sydney NSW 2052 Australia.
Small Sci. 2025 Jun 1;5(8):2500151. doi: 10.1002/smsc.202500151. eCollection 2025 Aug.
Nitric oxide (NO) is a therapeutic gas molecule involved in numerous physiological and pathological processes. However, its clinical application is limited by its short half-life and limited diffusion distance in human tissues, necessitating the development of effective NO delivery strategies. NO generation via catalytic decomposition of endogenous NO donors has emerged as a promising approach. Selenium nanoparticles (SeNPs) have demonstrated high catalytic efficiency for NO generation with low cytotoxicity, but their performance is hindered by poor stability under physiological conditions and pH-dependent activity. To address these limitations, in this study, selenium-polydopamine core-shell nanoparticles (Se@PDA NPs) are developed to improve catalytic stability and mitigate pH sensitivity. The PDA coating enables consistent NO delivery across a broad pH range (5.5-8.5), expanding their therapeutic potential. NO generation is tunable by varying the PDA coating thickness, and the nanoparticles exhibit excellent biocompatibility and enhanced cellular uptake. In human coronary artery smooth muscle cells, Se@PDA NPs catalyze intracellular NO generation from endogenous -nitrosothiols and promote the formation of multicellular aggregates, indicating potential activation of intercellular communication. The Se@PDA NPs maintain sustained NO generation over five doses and remain active for at least two months, demonstrating strong potential for NO-based therapies.
一氧化氮(NO)是一种参与众多生理和病理过程的治疗性气体分子。然而,其临床应用受到其短半衰期和在人体组织中有限扩散距离的限制,因此需要开发有效的NO递送策略。通过内源性NO供体的催化分解产生NO已成为一种有前景的方法。硒纳米颗粒(SeNPs)已证明具有高催化效率且细胞毒性低,但它们在生理条件下稳定性差以及pH依赖性活性阻碍了其性能。为了解决这些限制,在本研究中,开发了硒-聚多巴胺核壳纳米颗粒(Se@PDA NPs)以提高催化稳定性并减轻pH敏感性。PDA涂层能够在较宽的pH范围(5.5-8.5)内实现一致的NO递送,扩展了它们的治疗潜力。通过改变PDA涂层厚度可调节NO的产生,并且这些纳米颗粒表现出优异的生物相容性和增强的细胞摄取。在人冠状动脉平滑肌细胞中,Se@PDA NPs催化内源性亚硝基硫醇产生细胞内NO并促进多细胞聚集体的形成,表明细胞间通讯的潜在激活。Se@PDA NPs在五剂给药过程中保持持续的NO产生,并且至少两个月保持活性,显示出基于NO疗法的强大潜力。
Psychopharmacol Bull. 2024-7-8
Health Technol Assess. 2001
Cochrane Database Syst Rev. 2018-1-29
Arch Ital Urol Androl. 2025-6-30
Health Technol Assess. 2025-7
Cochrane Database Syst Rev. 2014-7-12
Colloids Surf B Biointerfaces. 2025-7
ACS Appl Bio Mater. 2024-6-17
Nat Commun. 2023-2-7
J Colloid Interface Sci. 2023-3-15
Mater Horiz. 2021-6-1
Mater Sci Eng C Mater Biol Appl. 2021-11