Wang Minjia, Chen Xiaoyu, Wang Kesheng, Xu Kunhui, Yu Xinxin, Dai Qi, Ren Min
Zhejiang Hospital, Hangzhou, China.
Eye Hospital, Wenzhou Medical University, National Clinical Research Center for Ocular Diseases, Wenzhou, China.
Front Cell Dev Biol. 2025 Aug 5;13:1627327. doi: 10.3389/fcell.2025.1627327. eCollection 2025.
To develop and validate a novel digital biomarker, the energy curve of the meibomian gland (MG) edge, to assess MG uneven atrophy and aid in diagnosing blepharitis.
A retrospective study enrolled 76 dry eye patients (42 with blepharitis, 34 controls). Segmentation of upper eyelid meibography images was accomplished via a convolutional neural network (CNN)-based artificial intelligence (AI) model. The lower margin curve of MGs was extracted using an active contour model (Snake) to compute a composite energy value that integrates elastic, curvature, and smoothness energies. Clinical parameters, including non-invasive tear breakup time (NIBUT), lid margin score, and Meiboscore, were evaluated.
The group showed shorter NIBUT (median: 2.84 vs. 5.18 s, < 0.001) and higher lid margin scores (median: 2 vs. 1, = 0.002) and Meiboscores (median: 1 vs. 1, = 0.009). The group also exhibited significantly higher energy curve values than controls (median: 32.44 vs. 11.20, < 0.001), reflecting pronounced uneven gland atrophy. Meanwhile, MG density significantly influenced energy curve values ( = 0.010). After adjusting for MG density, the energy curve demonstrated strong diagnostic accuracy (AUC = 0.897, sensitivity 78.6%, specificity 91.2%).
The energy curve quantifies structural irregularities in MGs caused by infestation, serving as a non-invasive biomarker for early diagnosis. Its integration with meibography enhances clinical workflows, particularly in resource-limited settings.
开发并验证一种新型数字生物标志物——睑板腺(MG)边缘能量曲线,以评估MG不均匀萎缩并辅助诊断睑缘炎。
一项回顾性研究纳入了76例干眼患者(42例患有睑缘炎,34例为对照)。通过基于卷积神经网络(CNN)的人工智能(AI)模型完成上睑睑板腺图像的分割。使用主动轮廓模型(Snake)提取MG的下缘曲线,以计算整合弹性、曲率和平滑度能量的复合能量值。评估了包括非侵入性泪膜破裂时间(NIBUT)、睑缘评分和睑板腺评分在内的临床参数。
睑缘炎组的NIBUT较短(中位数:2.84秒对5.18秒,P<0.001),睑缘评分较高(中位数:2对1,P = 0.002),睑板腺评分也较高(中位数:1对1,P = 0.009)。睑缘炎组的能量曲线值也显著高于对照组(中位数:32.44对11.20,P<0.001),反映出明显的腺体不均匀萎缩。同时,MG密度显著影响能量曲线值(P = 0.010)。在调整MG密度后,能量曲线显示出较强的诊断准确性(AUC = 0.897,敏感性78.6%,特异性91.2%)。
能量曲线量化了由感染引起的MG结构不规则性,可作为早期诊断的非侵入性生物标志物。它与睑板腺图像分析相结合可优化临床工作流程,尤其是在资源有限的环境中。