Xing Yifan, Xu Huiming, Yang Deming, Deng Lichuan, Li Guolong, Zhao Zhixin, Lu Zhaohua, Ma Liuyin, Li Guangyou
Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou, China.
Center for Genomics, Haixia Institute of Science and Technology, College of Forestry, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, China.
Front Plant Sci. 2025 Aug 5;16:1640247. doi: 10.3389/fpls.2025.1640247. eCollection 2025.
Malate dehydrogenases are pivotal in plant metabolism and stress responses, yet their evolutionary dynamics and functional diversification in woody angiosperms remain underexplored. This study comprehensively characterized the MDH (EgMDH) gene family to elucidate its roles in development and environmental adaptation. We identified 14 genes and conducted phylogenetic, structural, and syntenic analyses to trace their evolutionary origins. Transcriptional networks were deciphered using -regulatory element analysis and protein interaction predictions. Spatiotemporal expression under hormone treatments (JA, SA), abiotic stresses (salt, cold), and nutrient deficiencies (phosphate, nitrogen, and boron) was profiled via transcriptome data or RT-qPCR experiments. Phylogenetics revealed three MDH clades: green algal-derived Groups I/II and red algal-derived Group III. Phylogenetics analysis with model plants revealed that lacked Group III MDHs, while Poplar lacked Group II members, indicating lineage-specific gene loss in woody angiosperms. Four segmental duplicated paralog pairs (/, /, /, /) exhibited conserved motifs, exon distributions, and synteny with woody dicots, underscoring structural conservation across angiosperms. Sixty transcription factors (TFs) coordinated expression, linking them to energy/stress adaptation and secondary metabolism. Subtype-specific regulators (e.g., GT-2, AIL6, NLP6) exclusively targeted Group II EgMDHs, indicating clade-divergent regulatory networks. showed tissue- and stage-dependent expression, particularly during late adventitious root development. genes also exhibited temporally distinct expression patterns under JA treatment, SA treatment, salt stress and cold stress conditions. Notably, eleven EgMDH proteins interacted with PPC1/ASP3, coupling malate metabolism to nitrogen/phosphate homeostasis and C/N balance. Taken together, genes displayed phased temporal and tissue-specific expression under Pi/N/B deficiencies. These results revealed that coordinated transcriptional reprogramming and protein interactions of EgMDHs were critical for nutrient stress adaptation. Overall, this study suggested that genes underwent lineage-specific diversification and played important roles in development and stress resilience.
苹果酸脱氢酶在植物代谢和应激反应中起着关键作用,然而它们在木本被子植物中的进化动态和功能多样化仍未得到充分研究。本研究全面表征了MDH(EgMDH)基因家族,以阐明其在发育和环境适应中的作用。我们鉴定了14个基因,并进行了系统发育、结构和共线性分析,以追溯它们的进化起源。利用顺式调控元件分析和蛋白质相互作用预测来解读转录网络。通过转录组数据或RT-qPCR实验分析了激素处理(JA、SA)、非生物胁迫(盐、冷)和营养缺乏(磷酸盐、氮和硼)下的时空表达。系统发育分析揭示了三个MDH进化枝:绿藻衍生的I/II组和红藻衍生的III组。与模式植物的系统发育分析表明,[具体物种]缺乏III组MDH,而杨树缺乏II组成员,这表明木本被子植物中存在谱系特异性基因丢失。四对片段重复旁系同源物([具体基因对1]、[具体基因对2]、[具体基因对3]、[具体基因对4])表现出保守的基序、外显子分布以及与木本双子叶植物的共线性,强调了被子植物间的结构保守性。60个转录因子(TFs)协调了[具体基因]的表达,将它们与能量/应激适应和次生代谢联系起来。亚型特异性调节因子(如GT-2、AIL6、NLP6)专门靶向II组EgMDH,表明进化枝特异性调控网络。[具体基因]表现出组织和阶段依赖性表达,特别是在不定根发育后期。[具体基因]在JA处理、SA处理、盐胁迫和冷胁迫条件下也表现出时间上不同的表达模式。值得注意的是,11种EgMDH蛋白与PPC1/ASP3相互作用,将苹果酸代谢与氮/磷酸盐稳态和C/N平衡联系起来。综上所述,[具体基因]在Pi/N/B缺乏时表现出阶段性的时间和组织特异性表达。这些结果表明,EgMDH的协调转录重编程和蛋白质相互作用对于营养胁迫适应至关重要。总体而言,本研究表明[具体基因]经历了谱系特异性多样化,并在发育和应激恢复力中发挥重要作用。