Ge Haixiao, Lv Gaoqiang, Qin Yang, Shen Min
College of Rural Revitalization, Jiangsu Open University, Nanjing, China.
College of Agricultural Engineering, Jiangsu University, Zhenjiang, China.
Front Plant Sci. 2025 Aug 5;16:1599177. doi: 10.3389/fpls.2025.1599177. eCollection 2025.
Leaf nitrogen concentration (LNC) is a critical indicator for evaluating crop health and optimizing nitrogen management in sustainable agriculture. While multispectral and hyperspectral sensing techniques enable precise LNC estimation, their high cost and technical complexity often hinder practical application. This study assesses RGB imaging as a cost-effective and accessible alternative for estimating rice LNC across leaf, canopy, and plot scales. Field experiments conducted at two sites during the 2018-2019 reproductive stages acquired RGB images at three spatial resolutions. For canopy and plot images, rice vegetation was isolated using green minus red (GMR) band indices and thresholding. Stepwise multiple linear regression (SMLR) models incorporating 13 color indices were developed. Results demonstrated that leaf-scale models achieved superior accuracy (R = 0.84-0.87, RMSE = 0.16-0.25%), validating RGB imaging's potential for high-precision diagnostics. At the canopy scale, vegetation segmentation enhanced model performance (an average R increase of 3% compared to those from unsegmented images), confirming the necessity of background removal. Plot-scale analysis revealed that UAV flight altitude minimally affected model accuracy within the range tested, with 100 m yielding comparable performance (R = 0.61-0.65) to other altitudes. Cross-site validation indicated promising generalizability at the leaf scale, while canopy and plot scale models exhibited greater sensitivity to environmental variations. This research establishes RGB imaging as a scalable tool for rice nitrogen monitoring, demonstrating that segmentation improves accuracy at larger spatial scales. These findings provide practical insights for implementing precision nitrogen management in smallholder farming systems, supporting ecological sustainability through reduced fertilizer overuse.
叶片氮浓度(LNC)是评估作物健康状况和优化可持续农业中氮素管理的关键指标。虽然多光谱和高光谱传感技术能够精确估算LNC,但它们的高成本和技术复杂性常常阻碍其实际应用。本研究评估了RGB成像作为一种经济高效且易于获取的替代方法,用于在叶片、冠层和地块尺度上估算水稻LNC。在2018 - 2019年生殖阶段于两个地点进行的田间试验,以三种空间分辨率获取了RGB图像。对于冠层和地块图像,利用绿减红(GMR)波段指数和阈值分割来分离水稻植被。开发了包含13种颜色指数的逐步多元线性回归(SMLR)模型。结果表明,叶片尺度模型具有更高的精度(R = 0.84 - 0.87,RMSE = 0.16 - 0.25%),验证了RGB成像在高精度诊断方面的潜力。在冠层尺度上,植被分割提高了模型性能(与未分割图像相比,平均R值提高了3%),证实了去除背景的必要性。地块尺度分析表明,在测试范围内,无人机飞行高度对模型精度的影响最小,100米的飞行高度产生的性能(R = 0.61 - 0.65)与其他高度相当。跨地点验证表明,在叶片尺度上具有良好的通用性,而冠层和地块尺度模型对环境变化更为敏感。本研究将RGB成像确立为一种可扩展的水稻氮监测工具,表明分割在更大空间尺度上提高了精度。这些发现为在小农户种植系统中实施精准氮管理提供了实际见解,通过减少化肥过度使用来支持生态可持续性。