Wang Keyu, Li Shiyi, Li Jiankun, Liang Chen, Li Jiayu, Lei Linfeng, Zhu Minghui, Zhuang Linzhou, Chen Jun, Xu Zhi, Yao Xiangdong
State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China.
Suzhou Laboratory, Suzhou, 215000, China.
Angew Chem Int Ed Engl. 2025 Oct 13;64(42):e202511112. doi: 10.1002/anie.202511112. Epub 2025 Aug 21.
The oxygen evolution reaction (OER), a bottleneck in electrochemical water splitting, is fundamentally limited by a scaling relationship between the binding energies of key intermediates (OH* and OOH*), imposing a minimum theoretical overpotential of 0.37 eV. Breaking this scaling relationship is crucial for enhancing OER activity, yet effective strategies remain scarce. We demonstrate that the introduction of high-electronegativity fluorion on chalcogenate-adsorbed nickel-iron oxyhydroxide (NiFeOOH) significantly shortens hydrogen bonds between the chalcogenate and OER intermediates (*OH and *OOH). This shortening promotes proton transfer kinetics and lowers the theoretical overpotential to 0.27 eV. Guided by these calculations, the co-adsorption of chalcogenate and fluorion on metal oxyhydroxide (NiFeSF-R) catalyst is synthesized, and it achieves 1.0 A cm at an ultralow overpotential of 304 mV in 1.0 M KOH, a substantial improvement of 106 and 182 mV compared to NiFeS-R and NiFe, respectively. Notably, NiFeSF-R exhibits exceptional stability, sustaining 1.0 A cm for over 500 h with negligible degradation. In an anion exchange membrane water electrolyzer, the NiFeSF-R anode stably achieves 1.0 A cm at 1.73 V for 700 h at 50 °C. This work highlights the potential of local coordination environment tuning to break scaling relationships for high-performance OER catalysts.
析氧反应(OER)是电化学水分解中的一个瓶颈,从根本上受到关键中间体(OH和OOH)结合能之间的比例关系限制,这使得理论最小过电位为0.37 eV。打破这种比例关系对于提高OER活性至关重要,但有效的策略仍然很少。我们证明,在硫属化物吸附的镍铁羟基氧化物(NiFeOOH)上引入高电负性的氟离子会显著缩短硫属化物与OER中间体(OH和OOH)之间的氢键。这种缩短促进了质子转移动力学,并将理论过电位降低到0.27 eV。在这些计算的指导下,合成了硫属化物和氟离子在金属羟基氧化物(NiFeSF-R)催化剂上的共吸附,并且它在1.0 M KOH中在304 mV的超低过电位下实现了1.0 A cm-2,与NiFeS-R和NiFe相比,分别有106和182 mV的显著改善。值得注意的是,NiFeSF-R表现出优异的稳定性,在500 h以上维持1.0 A cm-2且降解可忽略不计。在阴离子交换膜水电解槽中,NiFeSF-R阳极在50°C下于1.73 V时稳定地实现了1.0 A cm-2达700 h。这项工作突出了通过调整局部配位环境来打破高性能OER催化剂比例关系的潜力。