Suppr超能文献

用于功能连接分析的体素级或区域级干扰回归:这重要吗?

Voxel-Wise or Region-Wise Nuisance Regression for Functional Connectivity Analyses: Does It Matter?

作者信息

Muganga Tobias, Sasse Leonard, Larabi Daouia I, Nieto Nicolás, Caspers Julian, Eickhoff Simon B, Patil Kaustubh R

机构信息

Institute of Neuroscience and Medicine, Brain and Behaviour (INM-7), Research Center Jülich, Jülich, Germany.

Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.

出版信息

Hum Brain Mapp. 2025 Aug 15;46(12):e70323. doi: 10.1002/hbm.70323.

Abstract

Removal of nuisance signals (such as motion) from the BOLD time series is an important aspect of preprocessing to obtain meaningful resting-state functional connectivity (rs-FC). The nuisance signals are commonly removed using denoising procedures at the finest resolution, that is the voxel time series. Typically, the voxel-wise time series are then aggregated into predefined regions or parcels to obtain an rs-FC matrix as the correlation between pairs of regional time series. Computational efficiency can be improved by denoising the aggregated regional time series instead of the voxel time series. However, a comprehensive comparison of the effects of denoising on these two resolutions is missing. In this study, we systematically investigate the effects of denoising at different time series resolutions (voxel-level and region-level) in 370 unrelated subjects from the HCP-YA dataset. Alongside the time series resolution, we considered additional factors such as aggregation method (Mean and first eigenvariate [EV]) and parcellation granularity (100, 400, and 1000 regions). To assess the effect of those choices on the utility of the resulting whole-brain rs-FC, we evaluated the individual specificity (fingerprinting) and the capacity to predict age and three cognitive scores. Our findings show generally equal or better performance for region-level denoising with notable differences depending on the aggregation method. Using Mean aggregation yielded equal individual specificity and prediction performance for voxel-level and region-level denoising. When EV was employed for aggregation, the individual specificity of voxel-level denoising was reduced compared to region-level denoising. Increasing parcellation granularity generally improved individual specificity. For the prediction of age and cognitive test scores, only fluid intelligence indicated worse performance for voxel-level denoising in the case of aggregating with the EV. Based on these results, we recommend the adoption of region-level denoising for brain-behavior investigations when using Mean aggregation. This approach offers equal individual specificity and prediction capacity with reduced computational resources for the analysis of rs-FC patterns.

摘要

从血氧水平依赖(BOLD)时间序列中去除干扰信号(如运动信号)是预处理的一个重要方面,目的是获得有意义的静息态功能连接(rs-FC)。通常使用最高分辨率(即体素时间序列)的去噪程序来去除干扰信号。然后,典型的做法是将体素级时间序列汇总到预定义的区域或脑区,以获得rs-FC矩阵,作为区域时间序列对之间的相关性。通过对汇总后的区域时间序列而不是体素时间序列进行去噪,可以提高计算效率。然而,目前尚缺乏对这两种分辨率下的去噪效果的全面比较。在本研究中,我们系统地研究了在来自人类连接组计划青年成人(HCP-YA)数据集的370名无亲属关系的受试者中,不同时间序列分辨率(体素水平和区域水平)下的去噪效果。除了时间序列分辨率外,我们还考虑了其他因素,如汇总方法(均值和第一特征变量[EV])和脑区划分粒度(100、400和1000个区域)。为了评估这些选择对所得全脑rs-FC效用的影响,我们评估了个体特异性(指纹识别)以及预测年龄和三个认知分数的能力。我们的研究结果表明,区域水平去噪的性能总体上相同或更好,具体情况因汇总方法而异。使用均值汇总时,体素水平和区域水平去噪的个体特异性和预测性能相同。当使用EV进行汇总时,与区域水平去噪相比,体素水平去噪的个体特异性降低。增加脑区划分粒度通常会提高个体特异性。对于年龄和认知测试分数的预测,只有在使用EV汇总的情况下,流体智力显示体素水平去噪的性能较差。基于这些结果,我们建议在使用均值汇总进行脑-行为研究时,采用区域水平去噪。这种方法在分析rs-FC模式时,提供了相同的个体特异性和预测能力,同时减少了计算资源。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/858b/12368596/b84653baba4e/HBM-46-e70323-g005.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验