Suppr超能文献

通过传统和新型静息态 fMRI 连接分析的集成学习提高对人类特质和行为的预测。

Enhancing prediction of human traits and behaviors through ensemble learning of traditional and novel resting-state fMRI connectivity analyses.

机构信息

Araya Inc., Tokyo, Japan; Division of Cerebral Integration, National Institute for Physiological Sciences, Okazaki, Japan; Department of Psychiatry, Aichi Medical University, Nagakute, Japan.

Araya Inc., Tokyo, Japan; Department of Mathematical Informatics, Graduate School of Information Science and Technology, The University of Tokyo, Tokyo, Japan.

出版信息

Neuroimage. 2024 Dec 1;303:120911. doi: 10.1016/j.neuroimage.2024.120911. Epub 2024 Oct 31.

Abstract

Recent advances in cognitive neuroscience have focused on using resting-state functional connectivity (RSFC) data from fMRI scans to more accurately predict human traits and behaviors. Traditional approaches generally analyze RSFC by correlating averaged time-series data across regions of interest (ROIs) or networks, which may overlook important spatial signal patterns. To address this limitation, we introduced a novel linear regression technique that estimates RSFC by predicting spatial brain activity patterns in a target ROI from those in a seed ROI. We applied both traditional and our novel RSFC estimation methods to a large-scale dataset from the Human Connectome Project and the Brain Genomics Superstruct Project, analyzing resting-state fMRI data to predict sex, age, personality traits, and psychological task performance. To enhance prediction accuracy, we developed an ensemble learner that combines these qualitatively different methods using a weighted average approach. Our findings revealed that hierarchical clustering of RSFC patterns using our novel method displays distinct whole-brain grouping patterns compared to the traditional approach. Importantly, the ensemble model, integrating these diverse weak learners, outperformed the traditional RSFC method in predicting human traits and behaviors. Notably, the predictions from the traditional and novel methods showed relatively low similarity, indicating that our novel approach captures unique and previously undetected information about human traits and behaviors through fine-grained local spatial patterns of neural activation. These results highlight the potential of combining traditional and innovative RSFC analysis techniques to enrich our understanding of the neural basis of human traits and behaviors.

摘要

认知神经科学的最新进展集中在使用 fMRI 扫描的静息态功能连接 (RSFC) 数据,以更准确地预测人类特征和行为。传统方法通常通过关联感兴趣区域 (ROI) 或网络中的平均时间序列数据来分析 RSFC,这可能会忽略重要的空间信号模式。为了解决这个限制,我们引入了一种新的线性回归技术,通过从种子 ROI 预测目标 ROI 中的空间大脑活动模式来估计 RSFC。我们将传统和我们的新 RSFC 估计方法应用于来自人类连接组计划和大脑基因组超结构计划的大型数据集,分析静息态 fMRI 数据以预测性别、年龄、个性特征和心理任务表现。为了提高预测准确性,我们开发了一种集成学习器,该学习器使用加权平均方法结合这些定性不同的方法。我们的研究结果表明,使用我们的新方法对 RSFC 模式进行层次聚类与传统方法相比显示出明显的全脑分组模式。重要的是,集成模型整合了这些不同的弱学习者,在预测人类特征和行为方面优于传统的 RSFC 方法。值得注意的是,传统和新方法的预测结果相似度相对较低,这表明我们的新方法通过精细的局部空间神经激活模式捕捉到了关于人类特征和行为的独特且以前未被发现的信息。这些结果强调了结合传统和创新的 RSFC 分析技术的潜力,以丰富我们对人类特征和行为的神经基础的理解。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验