Ahmadi Hamed, Titze Natascha, Wild Katharina, Rodehutscord Markus
Institute of Animal Science, University of Hohenheim, Stuttgart, Germany.
Sci Rep. 2025 Aug 21;15(1):30711. doi: 10.1038/s41598-025-15101-w.
In vitro gas production (GP) is commonly used to evaluate ruminant feed, yet its accurate interpretation requires robust mathematical modeling. This study systematically explores a wide array of nonlinear models to explain GP dynamics across various feed types, addressing the question: how can efficient and versatile models that accurately represent GP profiles be identified? We hypothesized that distinct feed types exhibit unique GP characteristics, effectively captured by specific models, and that statistical and machine learning methodologies can streamline model selection. Utilizing a comprehensive dataset derived from 849 unique GP profiles across concentrate feed categories-including cereal and leguminous grains and processed protein feeds-21 candidate models were rigorously evaluated based on their goodness-of-fit metrics, with a particular emphasis on Bayesian Information Criterion (BIC) for model selection. A group of three models-namely Burr XII, Inverse paralogistic, and Log-logistic-consistently emerged as top performers, demonstrating high generalizability and predictive power across feed types. Notably, our analysis indicated that model type significantly influenced GP predictions, surpassing the impact of feed type characteristics. This research establishes a decision-making framework for model selection and sets the stage for further investigations linking in vitro GP parameters to in vivo digestibility, ultimately enhancing ruminant nutrition strategies.
体外产气法(GP)常用于评估反刍动物饲料,但其准确解读需要强大的数学建模。本研究系统探索了一系列非线性模型,以解释不同饲料类型的产气动态,解决了以下问题:如何识别能准确代表产气曲线的高效通用模型?我们假设不同的饲料类型具有独特的产气特征,可由特定模型有效捕捉,且统计和机器学习方法能简化模型选择。利用来自849个独特的精饲料类别产气曲线的综合数据集,包括谷物和豆类谷物以及加工蛋白饲料,基于拟合优度指标对21个候选模型进行了严格评估,特别强调贝叶斯信息准则(BIC)用于模型选择。一组三个模型,即布尔 XII 模型、逆帕拉逻辑模型和对数逻辑模型,始终表现出色,在不同饲料类型中展现出高度的通用性和预测能力。值得注意的是,我们的分析表明模型类型对产气预测有显著影响,超过了饲料类型特征的影响。本研究建立了模型选择的决策框架,并为进一步研究将体外产气参数与体内消化率联系起来奠定了基础,最终提升反刍动物营养策略。