Wang Tao, Zhang Peiyu, Anantharaman Karthik, Wang Huan, Zhang Huan, Zhang Min, Xu Jun
Key Laboratory of Lake and Watershed Science for Water Security, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, PR China.
Xiangxi River Ecosystem Research Station in the Three Gorges Reservoir Region, Institute of Hydrobiology, Chinese Academy of Sciences, Yixing, PR China.
Nat Commun. 2025 Aug 21;16(1):7806. doi: 10.1038/s41467-025-63162-2.
Virus-host interactions are vital to microbiome ecology and evolution, yet their responses to environmental stressors under global change remain poorly understood. We perform a 10-month outdoor mesocosm experiment simulating multi-trophic freshwater shallow lake ecosystems. Using a fully factorial design comprising eight treatments with six replicates each, we assess the individual and combined effects of climate warming, nutrient loading, and pesticide loading on DNA viral communities and their interactions with microbial hosts. Metagenomic sequencing recovers 12,359 viral OTUs and 1628 unique prokaryotic metagenome-assembled genomes. Our analysis shows that combined nutrient and pesticide loading causes significant disruption by synergistically reducing viral alpha diversity while altering beta diversity and predator-prey linkages. Stressors lead to the simplification of virus-bacteria cross-kingdom networks, with nutrient-pesticide combinations exerting the strongest influence, although warming impacts diminish in the presence of pesticides. Stressor-driven changes also affect the abundance and composition of viral auxiliary metabolic genes, leading to complex shifts in virus-mediated metabolic pathways under multiple stress conditions. These findings underscore the importance of understanding the regulatory role of viruses on microbial communities to effectively address the challenges posed by global change.
病毒与宿主的相互作用对微生物群落生态和进化至关重要,然而在全球变化背景下它们对环境压力源的反应仍知之甚少。我们进行了一项为期10个月的室外中宇宙实验,模拟多营养级淡水浅水湖泊生态系统。采用完全析因设计,包括8种处理,每种处理6个重复,我们评估了气候变暖、养分负荷和农药负荷对DNA病毒群落及其与微生物宿主相互作用的单独和综合影响。宏基因组测序共获得12359个病毒操作分类单元和1628个独特的原核宏基因组组装基因组。我们的分析表明,养分和农药的联合负荷通过协同降低病毒的α多样性、改变β多样性和捕食者 - 猎物联系,造成了显著破坏。压力源导致病毒 - 细菌跨界网络简化,养分 - 农药组合的影响最强,尽管在有农药存在的情况下变暖的影响会减弱。压力源驱动的变化也会影响病毒辅助代谢基因的丰度和组成,导致在多种压力条件下病毒介导的代谢途径发生复杂变化。这些发现强调了理解病毒对微生物群落的调节作用对于有效应对全球变化带来的挑战的重要性。