Department of Ecology, Evolution, and Natural Resources, Rutgers University, New Brunswick, 08901, USA.
Nat Commun. 2024 Aug 29;15(1):7473. doi: 10.1038/s41467-024-51344-3.
The antagonistic coevolution of microbes and viruses influences fundamentally the diversity of microbial communities. Information on how environmental variables interact with emergent defense-counterdefense strategies and community composition is, however, still scarce. Following biological intuition, diversity should increase with improved growth conditions, which offset evolutionary costs; however, laboratory and regional data suggest that microbial diversity decreases in nutrient-rich conditions. Moreover, global oceanic data show that microbial and viral diversity decline for high latitudes, although the underlying mechanisms are unknown. This article addresses these gaps by introducing an eco-evolutionary model for bacteria-virus antagonistic coevolution. The theory presented here harmonizes the observations above and identifies negative density dependence and viral plasticity (dependence of virus performance on host physiological state) as key drivers: environmental conditions selecting for slow host growth also limit viral performance, facilitating the survival of a diverse host community; host diversity, in turn, enables viral portfolio effects and bet-hedging strategies that sustain viral diversity. From marine microbes to phage therapy against antibiotic-resistant bacteria or cancer cells, the ubiquity of antagonistic coevolution highlights the need to consider eco-evolutionary interactions across a gradient of growth conditions.
微生物和病毒的拮抗协同进化从根本上影响了微生物群落的多样性。然而,关于环境变量如何与新兴的防御-反击策略和群落组成相互作用的信息仍然很少。根据生物学直觉,多样性应该随着生长条件的改善而增加,从而抵消进化成本;然而,实验室和区域数据表明,微生物多样性在营养丰富的条件下减少。此外,全球海洋数据表明,微生物和病毒的多样性随着高纬度的增加而减少,尽管其潜在机制尚不清楚。本文通过引入一个细菌-病毒拮抗协同进化的生态进化模型来解决这些差距。本文提出的理论协调了上述观察结果,并确定了负密度依赖性和病毒可塑性(病毒性能对宿主生理状态的依赖性)为关键驱动因素:选择宿主生长缓慢的环境条件也限制了病毒的性能,从而有利于多样化的宿主群落的生存;宿主多样性反过来又能促进病毒组合效应和风险分散策略,从而维持病毒的多样性。从海洋微生物到针对抗药性细菌或癌细胞的噬菌体治疗,拮抗协同进化的普遍性强调了需要在生长条件的梯度上考虑生态进化相互作用。