Bergero Miguel Angel, Martínez Pablo, Modina Patricio, Hosman Ricardo, Villamil Wenceslao, Gudiño Romina, David Carlos, Costa Lucas
Urology Department, Sanatorio Privado San Gerónimo, Santa Fe, Argentina.
Urology Department, Hospital Italiano de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina.
Sci Rep. 2025 Aug 21;15(1):30822. doi: 10.1038/s41598-025-16362-1.
Prostate cancer remains a significant public health concern, with a substantial proportion of patients experiencing biochemical recurrence (BCR) after radical prostatectomy (RP). Traditional risk models, such as CAPRA-S, have demonstrated moderate predictive performance, highlighting the need for more accurate tools. This study aimed to develop a machine learning (ML) model to predict BCR in patients undergoing robot-assisted laparoscopic RP (RALP). A retrospective cohort of 1024 (476 BCR+ and 548 BCR-) patients was analyzed, using a balanced dataset of 25 clinical and pathological variables. Five ML classifiers were evaluated, with XGBoost emerging as the best-performing model, achieving 84% accuracy and an AUC of 0.91. Model validation on an independent dataset of 96 patients confirmed its robustness, with an AUC of 0.89. Decision and calibration curves demonstrated the superior clinical applicability of XGBoost compared to CAPRA-S, indicating improved risk stratification and potential to optimize treatment decisions. The study underscores the value of ML in refining prognosis prediction and guiding therapeutic strategies in prostate cancer. While further validation in diverse clinical settings is necessary, these findings support the integration of ML-based models into clinical decision-making to enhance personalized patient management.
前列腺癌仍然是一个重大的公共卫生问题,相当一部分患者在根治性前列腺切除术(RP)后会出现生化复发(BCR)。传统的风险模型,如CAPRA-S,已显示出中等的预测性能,这突出表明需要更准确的工具。本研究旨在开发一种机器学习(ML)模型,以预测接受机器人辅助腹腔镜前列腺切除术(RALP)的患者的BCR。对1024例患者(476例BCR阳性和548例BCR阴性)的回顾性队列进行了分析,使用了包含25个临床和病理变量的平衡数据集。评估了五种ML分类器,其中XGBoost成为表现最佳的模型,准确率达到84%,曲线下面积(AUC)为0.91。在一个包含96例患者的独立数据集上进行的模型验证证实了其稳健性,AUC为0.89。决策曲线和校准曲线表明,与CAPRA-S相比,XGBoost具有更好临床适用性,这表明其在风险分层方面有所改进,并且有潜力优化治疗决策。该研究强调了ML在完善前列腺癌预后预测和指导治疗策略方面的价值。虽然需要在不同临床环境中进行进一步验证,但这些发现支持将基于ML的模型整合到临床决策中,以加强个性化的患者管理。