Department of Urology, Singapore General Hospital, Singapore, Singapore.
Singhealth Polyclinics, Singapore, Singapore.
Prostate. 2022 Feb;82(3):298-305. doi: 10.1002/pros.24272. Epub 2021 Dec 2.
After radical prostatectomy (RP), one-third of patients will experience biochemical recurrence (BCR), which is associated with subsequent metastasis and cancer-specific mortality. We employed machine learning (ML) algorithms to predict BCR after RP, and compare them with traditional regression models and nomograms.
Utilizing a prospective Uro-oncology registry, 18 clinicopathological parameters of 1130 consecutive patients who underwent RP (2009-2018) were recorded, yielding over 20,000 data points for analysis. The data set was split into a 70:30 ratio for training and validation. Three ML models: Naïve Bayes (NB), random forest (RF), and support vector machine (SVM) were studied, and compared with traditional regression models and nomograms (Kattan, CAPSURE, John Hopkins [JHH]) to predict BCR at 1, 3, and 5 years.
Over a median follow-up of 70.0 months, 176 (15.6%) developed BCR, at a median time of 16.0 months (interquartile range [IQR]: 11.0-26.0). Multivariate analyses demonstrated strongest association of BCR with prostate-specific antigen (PSA) (p: 0.015), positive surgical margins (p < 0.001), extraprostatic extension (p: 0.002), seminal vesicle invasion (p: 0.004), and grade group (p < 0.001). The 3 ML models demonstrated good prediction of BCR at 1, 3, and 5 years, with the area under curves (AUC) of NB at 0.894, 0.876, and 0.894, RF at 0.846, 0.875, and 0.888, and SVM at 0.835, 0.850, and 0.855, respectively. All models demonstrated (1) robust accuracy (>0.82), (2) good calibration with minimal overfitting, (3) longitudinal consistency across the three time points, and (4) inter-model validity. The ML models were comparable to traditional regression analyses (AUC: 0.797, 0.848, and 0.862) and outperformed the three nomograms: Kattan (AUC: 0.815, 0.798, and 0.799), JHH (AUC: 0.820, 0.757, and 0.750) and CAPSURE nomograms (AUC: 0.706, 0.720, and 0.749) (p < 0.001).
Supervised ML algorithms can deliver accurate performances and outperform nomograms in predicting BCR after RP. This may facilitate tailored care provisions by identifying high-risk patients who will benefit from multimodal therapy.
目的:根治性前列腺切除术(RP)后,三分之一的患者会发生生化复发(BCR),这与随后的转移和癌症特异性死亡有关。我们使用机器学习(ML)算法来预测 RP 后的 BCR,并与传统的回归模型和列线图进行比较。
方法:利用前瞻性泌尿肿瘤学注册中心,记录了 1130 例连续接受 RP(2009-2018 年)的患者的 18 个临床病理参数,产生了超过 20000 个数据点进行分析。数据集分为 70:30 的训练和验证比例。研究了三种 ML 模型:朴素贝叶斯(NB)、随机森林(RF)和支持向量机(SVM),并与传统的回归模型和列线图(卡坦、CAPSURE、约翰霍普金斯[JHH])进行比较,以预测 1、3 和 5 年内的 BCR。
结果:在中位随访 70.0 个月期间,176 例(15.6%)发生 BCR,中位时间为 16.0 个月(四分位距[IQR]:11.0-26.0)。多变量分析表明,BCR 与前列腺特异性抗原(PSA)(p:0.015)、阳性手术切缘(p<0.001)、前列腺外扩展(p:0.002)、精囊侵犯(p:0.004)和分级组(p<0.001)的关联最强。这 3 个 ML 模型在 1、3 和 5 年内均能很好地预测 BCR,NB 的曲线下面积(AUC)分别为 0.894、0.876 和 0.894,RF 为 0.846、0.875 和 0.888,SVM 为 0.835、0.850 和 0.855。所有模型均显示:(1)稳健的准确性(>0.82);(2)最小过度拟合的良好校准;(3)三个时间点的纵向一致性;(4)模型间的有效性。ML 模型与传统回归分析(AUC:0.797、0.848 和 0.862)相当,优于三个列线图:卡坦(AUC:0.815、0.798 和 0.799)、约翰霍普金斯(AUC:0.820、0.757 和 0.750)和 CAPSURE 列线图(AUC:0.706、0.720 和 0.749)(p<0.001)。
结论:有监督的 ML 算法可以提供准确的性能,并在预测 RP 后的 BCR 方面优于列线图。这可能有助于通过识别将从多模式治疗中受益的高危患者,为患者提供个性化的护理。