文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

探索协同效应:借助机器学习推动神经科学发展。

Exploring synergies: Advancing neuroscience with machine learning.

作者信息

Ajirak Marzieh, Adali Tülay, Sanei Saeid, Grosenick Logan, Djurić Petar M

机构信息

Weill Cornell Medicine, Cornell University, New York, NY, 10065, USA.

Department of Computer Science and Electrical Engineering, University of Maryland Baltimore County, Baltimore, MD, 21250, USA.

出版信息

Signal Processing. 2026 Jan;238. doi: 10.1016/j.sigpro.2025.110116. Epub 2025 Jun 2.


DOI:10.1016/j.sigpro.2025.110116
PMID:40843337
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12366762/
Abstract

Machine learning (ML) has transformed neuroscience research by providing powerful tools to analyze neural data, uncover brain connectivity, and guide therapeutic interventions. This paper presents core mathematical frameworks in ML that address critical challenges in neuroscience. We introduce state-space models for closed-loop neurostimulation and discrete representation learning methods that improve the interpretability of time-series analysis by extracting meaningful patterns from complex neural recordings. We also describe approaches for revealing inter-regional brain connectivity through high-dimensional time series analysis using Gaussian processes. In the context of multi-subject neuroimaging, we explore independent vector analysis to identify shared patterns that preserve individual differences. Finally, we examine distributed beamforming techniques to localize seizure sources from EEG data, an essential component of surgical planning for epilepsy treatment. These methodological innovations illustrate the growing role of ML in neuroscience via interpretable, adaptive, and personalized tools that analyze brain activity and support data-driven interventions.

摘要

机器学习(ML)通过提供强大的工具来分析神经数据、揭示大脑连接性并指导治疗干预,已经改变了神经科学研究。本文介绍了机器学习中的核心数学框架,这些框架解决了神经科学中的关键挑战。我们引入了用于闭环神经刺激的状态空间模型以及离散表示学习方法,这些方法通过从复杂的神经记录中提取有意义的模式来提高时间序列分析的可解释性。我们还描述了通过使用高斯过程的高维时间序列分析来揭示区域间大脑连接性的方法。在多主体神经成像的背景下,我们探索独立向量分析以识别保留个体差异的共享模式。最后,我们研究分布式波束形成技术,以便从脑电图(EEG)数据中定位癫痫发作源,这是癫痫治疗手术规划的重要组成部分。这些方法创新通过可解释、自适应和个性化的工具展示了机器学习在神经科学中日益增长的作用,这些工具可分析大脑活动并支持数据驱动的干预。

相似文献

[1]
Exploring synergies: Advancing neuroscience with machine learning.

Signal Processing. 2026-1

[2]
Stabilizing machine learning for reproducible and explainable results: A novel validation approach to subject-specific insights.

Comput Methods Programs Biomed. 2025-6-21

[3]
Prescription of Controlled Substances: Benefits and Risks

2025-1

[4]
SFPGCL: Specificity-preserving federated population graph contrastive learning for multi-site ASD identification using rs-fMRI data.

Comput Med Imaging Graph. 2025-9

[5]
Short-Term Memory Impairment

2025-1

[6]
Machine Learning-Driven Insights in Cancer Metabolomics: From Subtyping to Biomarker Discovery and Prognostic Modeling.

Metabolites. 2025-8-1

[7]
Imaging-genomic spatial-modality attentive fusion for studying neuropsychiatric disorders.

Hum Brain Mapp. 2024-12-1

[8]
Longitudinal EEG-based assessment of neuroplasticity and adaptive responses to transcranial focused ultrasound stimulation.

J Neurosci Methods. 2025-10

[9]
Directionality of neural activity in and out of the seizure onset zone in focal epilepsy.

Netw Neurosci. 2025-6-30

[10]
Frontiers in EEG as a tool for the management of pediatric epilepsy: Past, present, and future.

Epilepsia Open. 2025-8-4

本文引用的文献

[1]
Discrete Representation Learning for Multivariate Time Series.

Proc Eur Signal Process Conf EUSIPCO. 2024-8

[2]
Editorial: Brain-inspired computing: from neuroscience to neuromorphic electronics for new forms of artificial intelligence.

Front Neurosci. 2025-2-11

[3]
Artificial Intelligence and Neuroscience: Transformative Synergies in Brain Research and Clinical Applications.

J Clin Med. 2025-1-16

[4]
Constrained Independent Vector Analysis With Reference for Multi-Subject fMRI Analysis.

IEEE Trans Biomed Eng. 2024-12

[5]
Closing the Experiment-Modeling-Perturbation Loop in Whole-Brain Neuroscience.

Neurosci Bull. 2024-8

[6]
Do Interictal Epileptiform Discharges and Brain Responses to Electrical Stimulation Come From the Same Location? An Advanced Source Localization Solution.

IEEE Trans Biomed Eng. 2024-9

[7]
Localizing seizure onset zone by a cortico-cortical evoked potentials-based machine learning approach in focal epilepsy.

Clin Neurophysiol. 2024-2

[8]
From dawn till dusk: Time-adaptive bayesian optimization for neurostimulation.

PLoS Comput Biol. 2023-12

[9]
A review of signal processing and machine learning techniques for interictal epileptiform discharge detection.

Comput Biol Med. 2024-1

[10]
Machine learning and artificial intelligence in neuroscience: A primer for researchers.

Brain Behav Immun. 2024-1

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索