Suppr超能文献

探索协同效应:借助机器学习推动神经科学发展。

Exploring synergies: Advancing neuroscience with machine learning.

作者信息

Ajirak Marzieh, Adali Tülay, Sanei Saeid, Grosenick Logan, Djurić Petar M

机构信息

Weill Cornell Medicine, Cornell University, New York, NY, 10065, USA.

Department of Computer Science and Electrical Engineering, University of Maryland Baltimore County, Baltimore, MD, 21250, USA.

出版信息

Signal Processing. 2026 Jan;238. doi: 10.1016/j.sigpro.2025.110116. Epub 2025 Jun 2.

Abstract

Machine learning (ML) has transformed neuroscience research by providing powerful tools to analyze neural data, uncover brain connectivity, and guide therapeutic interventions. This paper presents core mathematical frameworks in ML that address critical challenges in neuroscience. We introduce state-space models for closed-loop neurostimulation and discrete representation learning methods that improve the interpretability of time-series analysis by extracting meaningful patterns from complex neural recordings. We also describe approaches for revealing inter-regional brain connectivity through high-dimensional time series analysis using Gaussian processes. In the context of multi-subject neuroimaging, we explore independent vector analysis to identify shared patterns that preserve individual differences. Finally, we examine distributed beamforming techniques to localize seizure sources from EEG data, an essential component of surgical planning for epilepsy treatment. These methodological innovations illustrate the growing role of ML in neuroscience via interpretable, adaptive, and personalized tools that analyze brain activity and support data-driven interventions.

摘要

机器学习(ML)通过提供强大的工具来分析神经数据、揭示大脑连接性并指导治疗干预,已经改变了神经科学研究。本文介绍了机器学习中的核心数学框架,这些框架解决了神经科学中的关键挑战。我们引入了用于闭环神经刺激的状态空间模型以及离散表示学习方法,这些方法通过从复杂的神经记录中提取有意义的模式来提高时间序列分析的可解释性。我们还描述了通过使用高斯过程的高维时间序列分析来揭示区域间大脑连接性的方法。在多主体神经成像的背景下,我们探索独立向量分析以识别保留个体差异的共享模式。最后,我们研究分布式波束形成技术,以便从脑电图(EEG)数据中定位癫痫发作源,这是癫痫治疗手术规划的重要组成部分。这些方法创新通过可解释、自适应和个性化的工具展示了机器学习在神经科学中日益增长的作用,这些工具可分析大脑活动并支持数据驱动的干预。

相似文献

本文引用的文献

1
Discrete Representation Learning for Multivariate Time Series.多元时间序列的离散表示学习
Proc Eur Signal Process Conf EUSIPCO. 2024 Aug;2024:1132-1136. doi: 10.23919/eusipco63174.2024.10715138. Epub 2024 Oct 23.
5
Closing the Experiment-Modeling-Perturbation Loop in Whole-Brain Neuroscience.闭合全脑神经科学中的实验-建模-扰动循环
Neurosci Bull. 2024 Aug;40(8):1212-1214. doi: 10.1007/s12264-024-01253-8. Epub 2024 Jul 16.
8
From dawn till dusk: Time-adaptive bayesian optimization for neurostimulation.从黎明到黄昏:神经刺激的时间自适应贝叶斯优化。
PLoS Comput Biol. 2023 Dec 13;19(12):e1011674. doi: 10.1371/journal.pcbi.1011674. eCollection 2023 Dec.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验