Suppr超能文献

机器学习驱动的癌症代谢组学见解:从亚型分类到生物标志物发现与预后建模

Machine Learning-Driven Insights in Cancer Metabolomics: From Subtyping to Biomarker Discovery and Prognostic Modeling.

作者信息

Elguoshy Amr, Zedan Hend, Saito Suguru

机构信息

Biofluid Biomarker Center, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 9502181, Japan.

Graduate School of Science and Technology, Niigata University, Niigata 9502181, Japan.

出版信息

Metabolites. 2025 Aug 1;15(8):514. doi: 10.3390/metabo15080514.

Abstract

Cancer metabolic reprogramming plays a critical role in tumor progression and therapeutic resistance, underscoring the need for advanced analytical strategies. Metabolomics, leveraging mass spectrometry and nuclear magnetic resonance (NMR) spectroscopy, offers a comprehensive and functional readout of tumor biochemistry. By enabling both targeted metabolite quantification and untargeted profiling, metabolomics captures the dynamic metabolic alterations associated with cancer. The integration of metabolomics with machine learning (ML) approaches further enhances the interpretation of these complex, high-dimensional datasets, providing powerful insights into cancer biology from biomarker discovery to therapeutic targeting. This review systematically examines the transformative role of ML in cancer metabolomics. We discuss how various ML methodologies-including supervised algorithms (e.g., Support Vector Machine, Random Forest), unsupervised techniques (e.g., Principal Component Analysis, t-SNE), and deep learning frameworks-are advancing cancer research. Specifically, we highlight three major applications of ML-metabolomics integration: (1) cancer subtyping, exemplified by the use of Similarity Network Fusion (SNF) and LASSO regression to classify triple-negative breast cancer into subtypes with distinct survival outcomes; (2) biomarker discovery, where Random Forest and Partial Least Squares Discriminant Analysis (PLS-DA) models have achieved >90% accuracy in detecting breast and colorectal cancers through biofluid metabolomics; and (3) prognostic modeling, demonstrated by the identification of race-specific metabolic signatures in breast cancer and the prediction of clinical outcomes in lung and ovarian cancers. Beyond these areas, we explore applications across prostate, thyroid, and pancreatic cancers, where ML-driven metabolomics is contributing to earlier detection, improved risk stratification, and personalized treatment planning. We also address critical challenges, including issues of data quality (e.g., batch effects, missing values), model interpretability, and barriers to clinical translation. Emerging solutions, such as explainable artificial intelligence (XAI) approaches and standardized multi-omics integration pipelines, are discussed as pathways to overcome these hurdles. By synthesizing recent advances, this review illustrates how ML-enhanced metabolomics bridges the gap between fundamental cancer metabolism research and clinical application, offering new avenues for precision oncology through improved diagnosis, prognosis, and tailored therapeutic strategies.

摘要

癌症代谢重编程在肿瘤进展和治疗耐药性中起着关键作用,这凸显了先进分析策略的必要性。代谢组学利用质谱和核磁共振(NMR)光谱技术,提供了肿瘤生物化学的全面且功能性的读数。通过实现靶向代谢物定量和非靶向分析,代谢组学捕捉与癌症相关的动态代谢变化。代谢组学与机器学习(ML)方法的整合进一步增强了对这些复杂高维数据集的解读,从生物标志物发现到治疗靶点,为癌症生物学提供了有力的见解。本综述系统地探讨了ML在癌症代谢组学中的变革性作用。我们讨论了各种ML方法,包括监督算法(如支持向量机、随机森林)、无监督技术(如主成分分析、t-SNE)和深度学习框架如何推动癌症研究。具体而言,我们强调了ML-代谢组学整合的三个主要应用:(1)癌症亚型分类,以使用相似性网络融合(SNF)和套索回归将三阴性乳腺癌分为具有不同生存结果的亚型为例;(2)生物标志物发现,随机森林和偏最小二乘判别分析(PLS-DA)模型通过生物流体代谢组学检测乳腺癌和结直肠癌的准确率超过90%;(3)预后建模,通过识别乳腺癌中种族特异性代谢特征以及预测肺癌和卵巢癌的临床结果得以证明。除了这些领域,我们还探索了ML驱动的代谢组学在前列腺癌、甲状腺癌和胰腺癌中的应用,这些应用有助于早期检测、改善风险分层和个性化治疗规划。我们还讨论了关键挑战,包括数据质量问题(如批次效应、缺失值)、模型可解释性以及临床转化障碍。新兴解决方案,如可解释人工智能(XAI)方法和标准化多组学整合管道,被作为克服这些障碍的途径进行了讨论。通过综合近期进展,本综述阐述了ML增强的代谢组学如何弥合基础癌症代谢研究与临床应用之间的差距,通过改进诊断、预后和定制治疗策略为精准肿瘤学提供了新途径。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/73f0/12388062/94d26691bba4/metabolites-15-00514-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验