Suppr超能文献

用于多受试者功能磁共振成像分析的带参考的约束独立向量分析

Constrained Independent Vector Analysis With Reference for Multi-Subject fMRI Analysis.

作者信息

Vu Trung, Laport Francisco, Yang Hanlu, Calhoun Vince D, Adal Tulay

出版信息

IEEE Trans Biomed Eng. 2024 Dec;71(12):3531-3542. doi: 10.1109/TBME.2024.3432273. Epub 2024 Nov 21.

Abstract

Independent component analysis (ICA) is now a widely used solution for the analysis of multi-subject functional magnetic resonance imaging (fMRI) data. Independent vector analysis (IVA) generalizes ICA to multiple datasets (multi-subject data). Along with higher-order statistical information in ICA, it leverages the statistical dependence across the datasets as an additional type of statistical diversity. As such, IVA preserves variability in the estimation of single-subject maps but its performance might suffer when the number of datasets increases. Constrained IVA is an effective way to bypass computational issues and improve the quality of separation by incorporating available prior information. Existing constrained IVA approaches often rely on user-defined threshold values to define the constraints. However, an improperly selected threshold can have a negative impact on the final results. This paper proposes two novel methods for constrained IVA: one using an adaptive-reverse scheme to select variable thresholds for the constraints and a second one based on a threshold-free formulation by leveraging the unique structure of IVA. Notably, the proposed algorithms do not require all components to be constrained, utilizing free components to model interferences and components that might not be in the reference set. We demonstrate that our solutions provide an attractive solution to multi-subject fMRI analysis both by simulations and through analysis of resting state fMRI data collected from 98 subjects - the highest number of subjects ever used by IVA algorithms. Our results show that both proposed approaches obtain significantly better separation quality and model match while providing computationally efficient and highly reproducible solutions.

摘要

独立成分分析(ICA)如今是分析多主体功能磁共振成像(fMRI)数据的一种广泛使用的方法。独立向量分析(IVA)将ICA推广到多个数据集(多主体数据)。除了ICA中的高阶统计信息外,它还利用数据集之间的统计依赖性作为另一种统计多样性。因此,IVA在估计单主体图谱时保留了变异性,但当数据集数量增加时其性能可能会受到影响。约束IVA是一种有效的方法,通过纳入可用的先验信息来绕过计算问题并提高分离质量。现有的约束IVA方法通常依赖用户定义的阈值来定义约束。然而,阈值选择不当可能会对最终结果产生负面影响。本文提出了两种用于约束IVA的新方法:一种使用自适应反向方案为约束选择可变阈值,另一种基于无阈值公式,利用IVA的独特结构。值得注意的是,所提出的算法并不要求所有成分都受到约束,而是利用自由成分来模拟干扰以及可能不在参考集中的成分。我们通过模拟以及对从98名受试者收集的静息态fMRI数据进行分析表明,我们的解决方案为多主体fMRI分析提供了一个有吸引力的方案——这是IVA算法所使用的受试者数量最多的一次。我们的结果表明,两种提出的方法都获得了显著更好的分离质量和模型匹配,同时提供了计算高效且高度可重复的解决方案。

相似文献

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验