Liu Yu, Kleinhanns Tobias, Horta Sharona, Dutkiewicz-Kopczynska Ewelina P, Lu Shaoqing, Spadaro Maria Chiara, Genç Aziz, Chen Lei, Lim Khak Ho, Hong Min, Arbiol Jordi, Ibáñez Maria
Anhui Province Engineering Research Center of Flexible and Intelligent Materials, School of Chemistry and Chemical Engineering, Hefei University of Technology, 230009, Hefei, China.
Institute of Science and Technology Austria (ISTA), Am Campus 1, 3400, Klosterneuburg, Austria.
J Am Chem Soc. 2025 Sep 3;147(35):32199-32208. doi: 10.1021/jacs.5c11435. Epub 2025 Aug 22.
AgSe is a promising n-type thermoelectric material, but its performance is limited by excessive carrier concentration, compositional inhomogeneity, and phase instability, challenges rooted in a narrow homogeneity range and uncontrolled Ag diffusion in the superionic phase. Here, we address these issues by exploiting liquid-solid interface reactions using CdSe complexes that remove surface excess Ag to yield stoichiometric AgSe and generate CdSe nanodomains that inhibit Ag diffusion and constrain grain growth. The resulting AgSe-CdSe nanocomposites exhibit a reproducible, stable figure of merit () of 1.04 between 300 and 390 K. Beyond demonstrating high performance, we elucidate the interfacial chemical reactions that give rise to the observed microstructure and transport properties, providing a foundation for rationally engineering interfacial chemistry to tailor transport properties across diverse thermoelectric material systems.
AgSe是一种很有前景的n型热电材料,但其性能受到载流子浓度过高、成分不均匀以及相不稳定的限制,这些挑战源于其狭窄的均匀性范围以及在超离子相中不受控制的Ag扩散。在此,我们通过利用CdSe络合物的液-固界面反应来解决这些问题,该反应可去除表面过量的Ag以生成化学计量比的AgSe,并生成抑制Ag扩散和限制晶粒生长的CdSe纳米域。所得的AgSe-CdSe纳米复合材料在300至390 K之间表现出可重现的、稳定的优值()为1.04。除了展示高性能之外,我们还阐明了导致观察到的微观结构和输运性质的界面化学反应,为合理设计界面化学以调整各种热电材料系统的输运性质奠定了基础。