Dou Shuangxin, Hu Zhifu, Jia Junjie, Kong Xiangjin
School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252000, Shandong, China.
School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252000, Shandong, China..
J Colloid Interface Sci. 2026 Jan;701:138679. doi: 10.1016/j.jcis.2025.138679. Epub 2025 Aug 9.
The tandem catalytic conversion of furfural to cyclopentanone represents a crucial transformation in biomass valorization, yet faces persistent challenges due to competing hydrogenation and ring-opening pathways. Herein, we report the rational design of a three-dimensional flower-like hierarchical nanostructure catalyst derived from NiZnAl-layered double oxide precursors, which features well-dispersed NiZn alloy active sites. Comprehensive characterization studies reveal that Zn incorporation plays a dual role in modulating surface acidity and promoting oxygen vacancies formation through structural reconstruction. Mechanistic investigations via density functional theory calculations demonstrate that the NiZn phase optimizes the adsorption geometry of furfural molecules, while the engineered oxygen vacancies synergistically enhance H dissociation and polarize the CO group through electron transfer effects. This unique configuration effectively suppresses undesirable furan ring over‑hydrogenation. The optimized NiZnAl catalyst demonstrates exceptional performance with quantitative conversion of furfural (100 %) and remarkable cyclopentanone selectivity (97.3 %) under industrially viable conditions (160 °C, 0.5 MPa H), outperforming most reported non-noble metal catalysts. This work provides a material design strategy through multi-site synergistic engineering of metal alloys, acid-base properties, and defect structures, contributing to sustainable biomass valorization for fine chemical production.
糠醛串联催化转化为环戊酮是生物质增值过程中的关键转化反应,但由于存在竞争性氢化和开环途径,该反应一直面临挑战。在此,我们报道了一种由镍锌铝层状双氧化物前驱体制备的三维花状分级纳米结构催化剂的合理设计,其具有分散良好的镍锌合金活性位点。综合表征研究表明,锌的掺入在调节表面酸度和通过结构重构促进氧空位形成方面发挥了双重作用。通过密度泛函理论计算进行的机理研究表明,镍锌相优化了糠醛分子的吸附几何结构,而设计的氧空位通过电子转移效应协同增强了氢的解离并使羰基极化。这种独特的结构有效地抑制了呋喃环的过度氢化。优化后的镍锌铝催化剂在工业可行条件(160°C,0.5 MPa氢气)下表现出优异的性能,糠醛定量转化(100%)且环戊酮选择性显著(97.3%),优于大多数已报道的非贵金属催化剂。这项工作通过金属合金、酸碱性质和缺陷结构的多位点协同工程提供了一种材料设计策略,有助于实现用于精细化学品生产的可持续生物质增值。