Nguyen Hoang Tuan, Majumdar Abhisek, Nguyen Tran Thien An, Duong Nguyen Tram Anh, Kim Nam Hoon, Tran Duy Thanh, Lee Joong Hee
Department of Nano Convergence Engineering, Jeonbuk National University, Jeonju, Jeonbuk 54896, Republic of Korea.
Department of Nano Convergence Engineering, Jeonbuk National University, Jeonju, Jeonbuk 54896, Republic of Korea.
J Colloid Interface Sci. 2026 Jan;701:138703. doi: 10.1016/j.jcis.2025.138703. Epub 2025 Aug 17.
This study introduces a cost-effective, high-performance electrocatalyst based on non-noble metals for anion exchange membrane water electrolysis (AEMWE), crucial for sustainable hydrogen production. We describe a NiMn-oxo-phospho-selenide (NiMn-OPSe) catalyst, synthesized via a simple two-step method involving hydrothermal synthesis and controlled phospho-selenization. This approach combines morphology control, interface engineering, coordination tuning, and defect engineering, resulting in a needle-like structure that optimizes charge-transfer pathways and tunes the electronic structure, thereby enhancing catalytic performance. The NiMn-OPSe catalyst demonstrates outstanding HER and OER activities with ultralow overpotentials of 69 mV and 269 mV, respectively, at 10 mA cm in 1.0 M KOH medium, thus resulting in a low cell voltage of 1.57 V for overall water splitting, surpassing many non-noble metal catalysts and approaching noble-metal-level performance. Moreover, efficient performance of the fabricated AEMWE device is confirmed by requiring only 1.94 V to reach 500 mA cm, along with excellent stability over 500 h. Operando Raman spectroscopy reveals enhanced water dissociation capability, while water contact angle analysis confirms superior wettability. Density functional theory (DFT) calculations show that the NiSe/NiP/MnCO heterointerface optimizes hydrogen adsorption with near-zero ΔG and enhances electronic properties through d-band center modulation, confirming the intrinsic catalytic advantages of the developed NiMn-OPSe material.
本研究介绍了一种用于阴离子交换膜水电解(AEMWE)的具有成本效益的高性能非贵金属基电催化剂,这对可持续制氢至关重要。我们描述了一种镍锰氧磷硒化物(NiMn-OPSe)催化剂,它通过一种简单的两步法合成,包括水热合成和可控的磷硒化。这种方法结合了形貌控制、界面工程、配位调控和缺陷工程,形成了一种针状结构,优化了电荷转移途径并调整了电子结构,从而提高了催化性能。在1.0 M KOH介质中,NiMn-OPSe催化剂在10 mA cm时分别表现出出色的析氢反应(HER)和析氧反应(OER)活性,过电位超低,分别为69 mV和269 mV,因此全水分解的电池电压低至1.57 V,超过了许多非贵金属催化剂,接近贵金属水平的性能。此外,制造的AEMWE装置仅需1.94 V就能达到500 mA cm,且在500 h以上具有出色的稳定性,从而证实了其高效性能。原位拉曼光谱揭示了增强的水离解能力,而水接触角分析证实了优异的润湿性。密度泛函理论(DFT)计算表明,NiSe/NiP/MnCO异质界面以接近零的吉布斯自由能优化了氢吸附,并通过d带中心调制增强了电子性能,证实了所开发的NiMn-OPSe材料的内在催化优势。