Suppr超能文献

用于预测蛋白质-配体结合亲和力的双通道分层交互式学习

Dual-channel hierarchical interactive learning for the prediction of Protein-Ligand binding affinity.

作者信息

Wu Zheyu, Ma Huifang, Deng Bin, Li Zhixin, Chang Liang

机构信息

College of Computer Science and Engineering, Northwest Normal University, Lanzhou Gansu, 730070, China.

Ministry of Education, Key Lab of Education Blockchain and Intelligent Technology, Guangxi Normal University, Guilin, 541004, Guangxi, China.

出版信息

Neural Netw. 2025 Aug 18;193:107982. doi: 10.1016/j.neunet.2025.107982.

Abstract

Protein-ligand binding affinity (PLBA) is a crucial metric in drug screening for identifying potential candidate compounds. In recent years, deep learning-based methods have used representation learning to model interactions within protein-ligand complexes, demonstrating great promise in affinity prediction tasks. Existing studies have considered both intramolecular (covalent) and intermolecular (non-covalent) interactions to some extent. However, these interactions are often treated as independent features, lacking explicit hierarchical dependency modeling, which may lead to insufficient representation of interaction information and ultimately limit the accuracy of affinity predictions. To address this issue, we propose a novel approach-Dual-channel Hierarchical Interactive Learning (DHIL)-to achieve a more comprehensive modeling of protein-ligand interactions. DHIL employs a dual-channel encoding structure to simultaneously learn intramolecular and intermolecular interactions, ensuring the completeness of interaction features. Additionally, we design a hierarchical interactive learning paradigm to facilitate information exchange between these two interaction types at multiple levels, promoting their collaborative modeling. This mechanism mimics the local-to-global working principles of biological systems, enabling a more detailed and holistic representation of protein-ligand interactions. We conduct extensive and comprehensive experiments on a diverse set of benchmark datasets, rigorously evaluating the effectiveness of DHIL. The results demonstrate that DHIL significantly improves PLBA prediction accuracy, outperforming existing methods and further validating its potential in drug discovery and screening tasks. Nevertheless, the proposed framework introduces notable computational overhead due to multi-scale graph construction and cross-level message passing. It also exhibits sensitivity to the quality of input 3D binding conformations, which may affect its robustness in practical applications. These limitations suggest future directions for improving model efficiency and generalizability. To facilitate reproducibility and further research, the complete source code of DHIL has been released at: https://github.com/WZY-0814/DHIL.

摘要

蛋白质-配体结合亲和力(PLBA)是药物筛选中用于识别潜在候选化合物的关键指标。近年来,基于深度学习的方法利用表征学习对蛋白质-配体复合物内部的相互作用进行建模,在亲和力预测任务中展现出巨大潜力。现有研究在一定程度上考虑了分子内(共价)和分子间(非共价)相互作用。然而,这些相互作用通常被视为独立特征,缺乏明确的层次依赖性建模,这可能导致相互作用信息表示不足,最终限制亲和力预测的准确性。为解决这一问题,我们提出了一种新颖的方法——双通道层次交互学习(DHIL),以实现对蛋白质-配体相互作用更全面的建模。DHIL采用双通道编码结构同时学习分子内和分子间相互作用,确保相互作用特征的完整性。此外,我们设计了一种层次交互学习范式,以促进这两种相互作用类型在多个层面上的信息交换,推动它们的协同建模。这种机制模仿了生物系统从局部到全局的工作原理,能够对蛋白质-配体相互作用进行更详细、更全面的表示。我们在各种基准数据集上进行了广泛而全面的实验,严格评估了DHIL的有效性。结果表明,DHIL显著提高了PLBA预测准确性,优于现有方法,并进一步验证了其在药物发现和筛选任务中的潜力。然而,由于多尺度图构建和跨层消息传递,所提出的框架引入了显著的计算开销。它还对输入3D结合构象的质量表现出敏感性,这可能会影响其在实际应用中的鲁棒性。这些局限性为提高模型效率和通用性指明了未来的方向。为便于重现和进一步研究,DHIL的完整源代码已发布在:https://github.com/WZY-0814/DHIL

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验