Wang Lu, Wang Chengbing, Yin Dingwen, Zhang Wenhe, Tan Puxin, Zhao Zexiang, Jin Jingjing, Wang Xiaoxue
School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China.
School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China.
Water Res. 2025 Aug 16;287(Pt B):124416. doi: 10.1016/j.watres.2025.124416.
Solar interfacial evaporation (SIE) represents a promising solution for sustainable freshwater generation, yet it faces a fundamental challenge in balancing heat localization and salt rejection rooted in inherent water-energy conflicts. Inspired by the evaporation of terrestrial surface water, we present a biomimetic surface water evaporator engineered with an asymmetric hydrophilic (ZnO-CuS)/hydrophobic (carbon cloth) heterointerface, achieving concurrent optimization of water transport, thermal confinement, and salt discharge. This architecture constructs a confined water layer channel (20∼60 μm) on the hydrophobic surface to mimic river-inspired transport, which not only concentrates evaporation at the gas-liquid interface, achieving 92.05 % solar-to-vapor efficiency and an evaporation rate of 2.82 kg m h under 1 sun by minimizing parasitic heat dissipation, but also enables crystallization-free operation in hypersaline brine (20 wt% NaCl) over 8 h via unidirectional flow-driven solute expulsion. Crucially, the ZnO-CuS nano-heterostructure can realize the synergistic degradation of organic pollutants through the in-situ redox reaction, realizing the first holistic integration of "water-energy-salt-pollutant" linkage management on a single platform, and provides an innovative paradigm for the sustainable purification of complex water bodies.
太阳能界面蒸发(SIE)是可持续淡水生产的一种很有前景的解决方案,但由于固有的水 - 能源冲突,它在平衡热量局部化和盐分排斥方面面临着一个根本性挑战。受陆地地表水蒸发的启发,我们提出了一种仿生地表水蒸发器,其设计有不对称的亲水性(ZnO - CuS)/疏水性(碳布)异质界面,实现了水传输、热限制和盐分排放的同时优化。这种结构在疏水表面构建了一个受限水层通道(20∼60μm)以模拟受河流启发的传输,这不仅将蒸发集中在气 - 液界面,通过最小化寄生热耗散在1个太阳光照下实现了92.05%的太阳能到蒸汽效率和2.82 kg m⁻² h⁻¹的蒸发速率,而且通过单向流动驱动的溶质排出能够在高盐卤水(20 wt% NaCl)中无结晶运行8小时。至关重要的是,ZnO - CuS纳米异质结构可以通过原位氧化还原反应实现有机污染物的协同降解,在单个平台上实现了“水 - 能源 - 盐 - 污染物”联动管理的首次整体整合,并为复杂水体的可持续净化提供了一种创新范例。