Suppr超能文献

GPT-4o模型在解读心电图图像用于心脏诊断中的有效性:诊断准确性研究

Effectiveness of the GPT-4o Model in Interpreting Electrocardiogram Images for Cardiac Diagnostics: Diagnostic Accuracy Study.

作者信息

Engelstein Haya, Ramon-Gonen Roni, Sabbag Avi, Klang Eyal, Sudri Karin, Cohen-Shelly Michal, Barbash Israel

机构信息

Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel.

The Graduate School of Business Administration, Information Systems Program, Bar-Ilan University, Max and Anna Webb St, Ramat Gan, 5290002, Israel, 972 3-531-8910.

出版信息

JMIR AI. 2025 Aug 22;4:e74426. doi: 10.2196/74426.

Abstract

BACKGROUND

Recent progress has demonstrated the potential of deep learning models in analyzing electrocardiogram (ECG) pathologies. However, this method is intricate, expensive to develop, and designed for specific purposes. Large language models show promise in medical image interpretation, and yet their effectiveness in ECG analysis remains understudied. Generative Pretrained Transformer 4 Omni (GPT-4o), a multimodal artificial intelligence model, capable of processing images and text without task-specific training, may offer an accessible alternative.

OBJECTIVE

This study aimed to evaluate GPT-4o's effectiveness in interpreting 12-lead ECGs, assessing classification accuracy, and exploring methods to enhance its performance.

METHODS

A total of 6 common ECG diagnoses were evaluated: normal ECG, ST-segment elevation myocardial infarction, atrial fibrillation, right bundle branch block, left bundle branch block, and paced rhythm, with 30 normal ECGs and 10 of each abnormal pattern, totaling 80 cases. Deidentified ECGs were analyzed using OpenAI's GPT-4o. Our study used both zero-shot and few-shot learning methodologies to investigate three main scenarios: (1) ECG image recognition, (2) binary classification of normal versus abnormal ECGs, and (3) multiclass classification into 6 categories.

RESULTS

The model excelled in recognizing ECG images, achieving an accuracy of 100%. In the classification of normal or abnormal ECG cases, the few-shot learning approach improved GPT-4o's accuracy by 30% from the baseline, reaching 83% (95% CI 81.8%-84.6%). However, multiclass classification for a specific pathology remained limited, achieving only 41% accuracy.

CONCLUSIONS

GPT-4o effectively differentiates normal from abnormal ECGs, suggesting its potential as an accessible artificial intelligence-assisted triage tool. Although limited in diagnosing specific cardiac conditions, GPT-4o's capability to interpret ECG images without specialized training highlights its potential for preliminary ECG interpretation in clinical and remote settings.

摘要

背景

最近的进展表明深度学习模型在分析心电图(ECG)病理方面具有潜力。然而,这种方法复杂、开发成本高且是针对特定目的设计的。大语言模型在医学图像解释方面显示出前景,但其在心电图分析中的有效性仍有待深入研究。生成式预训练变换器4全能版(GPT-4o)是一种多模态人工智能模型,能够在无需特定任务训练的情况下处理图像和文本,可能提供一种易于使用的替代方案。

目的

本研究旨在评估GPT-4o在解释12导联心电图、评估分类准确性以及探索提高其性能的方法方面的有效性。

方法

共评估了6种常见的心电图诊断:正常心电图、ST段抬高型心肌梗死、心房颤动、右束支传导阻滞、左束支传导阻滞和起搏心律,其中有30份正常心电图,每种异常模式各10份,共80例。使用OpenAI的GPT-4o对匿名化的心电图进行分析。我们的研究使用零样本和少样本学习方法来研究三种主要情况:(1)心电图图像识别,(2)正常与异常心电图的二分类,以及(3)分为6类的多分类。

结果

该模型在识别心电图图像方面表现出色,准确率达到100%。在正常或异常心电图病例的分类中,少样本学习方法使GPT-4o的准确率比基线提高了30%,达到83%(95%可信区间81.8%-84.6%)。然而,针对特定病理的多分类仍然有限,准确率仅为41%。

结论

GPT-4o能有效区分正常与异常心电图,表明其作为一种易于使用的人工智能辅助分诊工具的潜力。尽管在诊断特定心脏疾病方面存在局限性,但GPT-4o无需专门训练就能解释心电图图像的能力突出了其在临床和远程环境中进行心电图初步解释的潜力。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验