Suppr超能文献

ScarNet:一种用于从延迟钆增强图像自动定量心肌瘢痕的新型基础模型。

ScarNet: A Novel Foundation Model for Automated Myocardial Scar Quantification from Late Gadolinium-Enhancement Images.

作者信息

Tavakoli Neda, Rahsepar Amir Ali, Benefield Brandon C, Shen Daming, López-Tapia Santiago, Schiffers Florian, Goldberger Jeffrey J, Albert Christine M, Wu Edwin, Katsaggelos Aggelos K, Lee Daniel C, Kim Daniel

机构信息

Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA. Electronic address: https://twitter.com/neda_tv.

Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.

出版信息

J Cardiovasc Magn Reson. 2025 Aug 20:101945. doi: 10.1016/j.jocmr.2025.101945.

Abstract

BACKGROUND

Late Gadolinium Enhancement (LGE) imaging remains the gold standard for assessing myocardial fibrosis and scarring, with left ventricular (LV) LGE presence and extent serving as a predictor of major adverse cardiac events (MACE). Despite its clinical significance, LGE-based LV scar quantification is not used routinely due to the labor-intensive manual segmentation and substantial inter-observer variability.

METHODS

We developed ScarNet that synergistically combines a transformer-based encoder in Medical Segment Anything Model (MedSAM), which we fine-tuned with our dataset, and a convolution-based decoder in U-Net with tailored attention blocks to automatically segment myocardial scar boundaries while maintaining anatomical context. This network was trained and fine-tuned on an existing database of 401 ischemic cardiomyopathy patients (4,137 2D LGE images) with expert segmentation of myocardial and scar boundaries in LGE images, validated on 100 patients (1,034 2D LGE images) during training, and tested on unseen set of 184 patients (1,895 2D LGE images). Ablation studies were conducted to validate each architectural component's contribution.

RESULTS

In 184 independent testing patients, ScarNet achieved accurate scar boundary segmentation (median DICE=0.912 [interquartile range (IQR): 0.863-0.944], concordance correlation coefficient [CCC]=0.963), significantly outperforming both MedSAM (median DICE=0.046 [IQR: 0.043-0.047], CCC=0.018) and nnU-Net (median DICE=0.638 [IQR: 0.604-0.661], CCC=0.734). For scar volume quantification, ScarNet demonstrated excellent agreement with manual analysis (CCC=0.995, percent bias=-0.63%, CoV=4.3%) compared to MedSAM (CCC=0.002, percent bias=-13.31%, CoV=130.3%) and nnU-Net (CCC=0.910, percent bias=-2.46%, CoV=20.3%). Similar trends were observed in the Monte Carlo simulations with noise perturbations. The overall accuracy was highest for SCARNet (sensitivity=95.3%; specificity=92.3%), followed by nnU-Net (sensitivity=74.9%; specificity=69.2%) and MedSAM (sensitivity=15.2%; specificity=92.3%).

CONCLUSION

ScarNet outperformed MedSAM and nnU-Net for predicting myocardial and scar boundaries in LGE images of patients with ischemic cardiomyopathy. The Monte Carlo simulations demonstrated that ScarNet is less sensitive to noise perturbations than other tested networks.

摘要

背景

延迟钆增强(LGE)成像仍然是评估心肌纤维化和瘢痕形成的金标准,左心室(LV)LGE的存在和范围可作为主要不良心脏事件(MACE)的预测指标。尽管其具有临床意义,但由于人工分割劳动强度大且观察者间差异大,基于LGE的左心室瘢痕量化并未常规使用。

方法

我们开发了ScarNet,它将医学分割一切模型(MedSAM)中基于Transformer的编码器(我们用自己的数据集对其进行了微调)与U-Net中基于卷积的解码器以及定制的注意力模块进行协同组合,以自动分割心肌瘢痕边界,同时保持解剖学背景。该网络在一个包含401例缺血性心肌病患者(4137幅二维LGE图像)的现有数据库上进行训练和微调,该数据库中LGE图像的心肌和瘢痕边界有专家分割结果,在训练期间对100例患者(1034幅二维LGE图像)进行了验证,并在184例患者(1895幅二维LGE图像)的未见过的数据集上进行了测试。进行了消融研究以验证每个架构组件的贡献。

结果

在184例独立测试患者中,ScarNet实现了准确的瘢痕边界分割(中位数DICE=0.912 [四分位间距(IQR):0.863 - 0.944],一致性相关系数[CCC]=0.963),显著优于MedSAM(中位数DICE=0.046 [IQR:0.043 - 0.047],CCC=0.018)和nnU-Net(中位数DICE=0.638 [IQR:0.604 - 0.661],CCC=0.734)。对于瘢痕体积量化,与MedSAM(CCC=0.002,偏差百分比=-13.31%,变异系数=130.3%)和nnU-Net(CCC=0.910,偏差百分比=-2.46%,变异系数=20.3%)相比,ScarNet与人工分析显示出极好的一致性(CCC=0.995,偏差百分比=-0.63%,变异系数=4.3%)。在有噪声干扰的蒙特卡罗模拟中也观察到了类似趋势。SCARNet的总体准确率最高(敏感性=95.3%;特异性=92.3%),其次是nnU-Net(敏感性=74.9%;特异性=69.2%)和MedSAM(敏感性=15.2%;特异性=92.3%)。

结论

在预测缺血性心肌病患者LGE图像中的心肌和瘢痕边界方面,ScarNet优于MedSAM和nnU-Net。蒙特卡罗模拟表明,ScarNet对噪声干扰的敏感性低于其他测试网络。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验