Suppr超能文献

用于腰椎磁共振成像的分割一切模型(SAM)和医学分割一切模型(MedSAM)

Segment Anything Model (SAM) and Medical SAM (MedSAM) for Lumbar Spine MRI.

作者信息

Chang Christian, Law Hudson, Poon Connor, Yen Sydney, Lall Kaustubh, Jamshidi Armin, Malis Vadim, Hwang Dosik, Bae Won C

机构信息

Punahou School, Honolulu, HI 96822, USA.

The Cambridge School, San Diego, CA 92129, USA.

出版信息

Sensors (Basel). 2025 Jun 7;25(12):3596. doi: 10.3390/s25123596.

Abstract

Lumbar spine Magnetic Resonance Imaging (MRI) is commonly used for intervertebral disc (IVD) and vertebral body (VB) evaluation during low back pain. Segmentation of these tissues can provide useful quantitative information such as shape and volume. The objective of the study was to determine the performances of Segment Anything Model (SAM) and medical SAM (MedSAM), two "zero-shot" deep learning models, in segmenting lumbar IVD and VB from MRI images and compare against the nnU-Net model. This cadaveric study used 82 donor spines. Manual segmentation was performed to serve as ground truth. Two readers processed the spine MRI using SAM and MedSAM by placing points or drawing bounding boxes around regions of interest (ROI). The outputs were compared against ground truths to determine Dice score, sensitivity, and specificity. Qualitatively, results varied but overall, MedSAM produced more consistent results than SAM, but neither matched the performance of nnU-Net. Mean Dice scores for MedSAM were 0.79 for IVDs and 0.88 for VBs, and significantly higher (each < 0.001) than those for SAM (0.64 for IVDs, 0.83 for VBs). Both were lower compared to nnU-Net (0.99 for IVD and VB). Sensitivity values also favored MedSAM. These results demonstrated the feasibility of "zero-shot" DL models to segment lumbar spine MRI. While performance falls short of recent models, these zero-shot models offer key advantages in not needing training data and faster adaptation to other anatomies and tasks. Validation of a generalizable segmentation model for lumbar spine MRI can lead to more precise diagnostics, follow-up, and enhanced back pain research, with potential cost savings from automated analyses while supporting the broader use of AI and machine learning in healthcare.

摘要

腰椎磁共振成像(MRI)常用于评估下背痛患者的椎间盘(IVD)和椎体(VB)。这些组织的分割可以提供诸如形状和体积等有用的定量信息。本研究的目的是确定两种“零样本”深度学习模型——分割一切模型(SAM)和医学分割一切模型(MedSAM)在从MRI图像中分割腰椎IVD和VB方面的性能,并与nnU-Net模型进行比较。这项尸体研究使用了82个供体脊柱。进行手动分割作为金标准。两名读者通过在感兴趣区域(ROI)周围放置点或绘制边界框,使用SAM和MedSAM处理脊柱MRI。将输出结果与金标准进行比较,以确定Dice分数、敏感性和特异性。定性地说,结果各不相同,但总体而言,MedSAM产生的结果比SAM更一致,但两者都无法与nnU-Net的性能相匹配。MedSAM对IVD的平均Dice分数为0.79,对VB的平均Dice分数为0.88,显著高于SAM(IVD为0.64,VB为0.83)(均P<0.001)。与nnU-Net相比(IVD和VB均为0.99),两者都较低。敏感性值也更有利于MedSAM。这些结果证明了“零样本”深度学习模型分割腰椎MRI的可行性。虽然性能低于最近的模型,但这些零样本模型具有关键优势,即不需要训练数据,并且能够更快地适应其他解剖结构和任务。验证一种可推广的腰椎MRI分割模型可以实现更精确的诊断、随访,并加强背痛研究,通过自动分析可能节省成本,同时支持人工智能和机器学习在医疗保健中的更广泛应用。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验