Du Xiaoxin, Yang Xue, Wang Bo, Jin Mei, Wang Yiping, Li Changrong, Wu Peilong
School of Computer and Control Engineering, Qiqihar University, Qiqihar, 161006, China.
Heilongjiang Key Laboratory of Big Data Network Security Detection and Analysis, Qiqihar University, Qiqihar, 161006, China.
Interdiscip Sci. 2025 Aug 22. doi: 10.1007/s12539-025-00751-1.
Metabolite-disease associations (MDAs) are critical for advancing precision medicine, yet existing computational methods face challenges in data sparsity, noise robustness, and feature representation. We propose GPLCL (graph prompt-enhanced contrastive learning), a novel multi-view graph learning framework integrating adaptive graph prompting and contrastive learning. GPLCL introduces enhanced graph prompt features (GPF +) with attention-based node adaptation, enabling dynamic feature recalibration. Through strategic graph augmentation and self-supervised contrastive optimization, it preserves essential topological invariants while aggregating multi-scale neighborhood patterns via HeteroGraphSAGE. In the fivefold cross-validation, GPLCL achieves AUC 0.9761 and AUPR 0.9729 on dataset 1, which is the highest improvement of 0.55 to 6.37 percentage points over the existing methods; GPLCL still maintains AUC 0.9576 and AUPR 0.9499 on the highly noisy Dataset 2, which proves its excellent performance and robustness. Case studies on type 1 diabetes, obesity, and Parkinson's disease highlighted the model's potential in discovering novel MDAs, underscoring its applicability in advancing metabolomics research and translational medicine. The code is publicly available at https://github.com/yxue9/GPLCL .
代谢物-疾病关联(MDA)对于推进精准医学至关重要,但现有的计算方法在数据稀疏性、噪声鲁棒性和特征表示方面面临挑战。我们提出了GPLCL(图提示增强对比学习),这是一种集成了自适应图提示和对比学习的新型多视图图学习框架。GPLCL通过基于注意力的节点自适应引入增强的图提示特征(GPF +),实现动态特征重新校准。通过策略性的图增强和自监督对比优化,它在通过异构图SAGE聚合多尺度邻域模式的同时保留了基本的拓扑不变量。在五折交叉验证中,GPLCL在数据集1上实现了AUC 0.9761和AUPR 0.9729,比现有方法有0.55至6.37个百分点的最高提升;在高噪声的数据集2上,GPLCL仍保持AUC 0.9576和AUPR 0.9499,证明了其优异的性能和鲁棒性。对1型糖尿病、肥胖症和帕金森病的案例研究突出了该模型在发现新型MDA方面的潜力,强调了其在推进代谢组学研究和转化医学中的适用性。代码可在https://github.com/yxue9/GPLCL上公开获取。