Suppr超能文献

EDDINet:通过信息流和共识约束多图对比学习增强药物-药物相互作用预测

EDDINet: Enhancing drug-drug interaction prediction via information flow and consensus constrained multi-graph contrastive learning.

作者信息

Wang Hong, Zhuang Luhe, Ding Yijie, Tiwari Prayag, Liang Cheng

机构信息

School of Information Science and Engineering, Shandong Normal University, Jinan, 250358, China.

Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou 324003, China.

出版信息

Artif Intell Med. 2025 Jan;159:103029. doi: 10.1016/j.artmed.2024.103029. Epub 2024 Nov 20.

Abstract

Predicting drug-drug interactions (DDIs) is crucial for understanding and preventing adverse drug reactions (ADRs). However, most existing methods inadequately explore the interactive information between drugs in a self-supervised manner, limiting our comprehension of drug-drug associations. This paper introduces EDDINet: Enhancing Drug-Drug Interaction Prediction via Information Flow and Consensus-Constrained Multi-Graph Contrastive Learning for precise DDI prediction. We first present a cross-modal information-flow mechanism to integrate diverse drug features, enriching the structural insights conveyed by the drug feature vector. Next, we employ contrastive learning to filter various biological networks, enhancing the model's robustness. Additionally, we propose a consensus regularization framework that collaboratively trains multi-view models, producing high-quality drug representations. To unify drug representations derived from different biological information, we utilize an attention mechanism for DDI prediction. Extensive experiments demonstrate that EDDINet surpasses state-of-the-art unsupervised models and outperforms some supervised baseline models in DDI prediction tasks. Our approach shows significant advantages and holds promising potential for advancing DDI research and improving drug safety assessments. Our codes are available at: https://github.com/95LY/EDDINet_code.

摘要

预测药物-药物相互作用(DDIs)对于理解和预防药物不良反应(ADRs)至关重要。然而,大多数现有方法未能以自监督的方式充分探索药物之间的交互信息,限制了我们对药物-药物关联的理解。本文介绍了EDDINet:通过信息流和共识约束多图对比学习增强药物-药物相互作用预测,以实现精确的DDI预测。我们首先提出一种跨模态信息流机制,以整合各种药物特征,丰富药物特征向量所传达的结构见解。接下来,我们采用对比学习来筛选各种生物网络,增强模型的鲁棒性。此外,我们提出了一个共识正则化框架,协同训练多视图模型,生成高质量的药物表示。为了统一从不同生物信息中获得的药物表示,我们在DDI预测中使用了注意力机制。大量实验表明,EDDINet在DDI预测任务中超越了现有的无监督模型,并优于一些有监督的基线模型。我们的方法显示出显著优势,在推进DDI研究和改进药物安全性评估方面具有广阔的潜力。我们的代码可在以下网址获取:https://github.com/95LY/EDDINet_code

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验