Tsuji Kosuke, Yamanaka Masahito, Kumamoto Yasuaki, Tamura Shoko, Miyamura Wakana, Kubo Toshiki, Mizushima Kenta, Kono Kakeru, Hirano Hanae, Shiozaki Momoko, Zhao Xiaowei, Xi Heqi, Sugiura Kazunori, Fukushima Shun-Ichi, Kunimoto Takumi, Tanabe Yoshino, Nishida Kentaro, Mochizuki Kentaro, Harada Yoshinori, Smith Nicholas I, Heintzmann Rainer, Yu Zhiheng, Wang Meng C, Nagai Takeharu, Tanaka Hideo, Fujita Katsumasa
Department of Applied Physics, Graduate School of Engineering, The University of Osaka, Osaka, Japan.
Advanced Photonics and Biosensing Open Innovation Laboratory, AIST-Osaka University, Osaka, Japan.
Light Sci Appl. 2025 Aug 23;14(1):275. doi: 10.1038/s41377-025-01941-8.
Fluorescence microscopy enables the visualization of cellular morphology, molecular distribution, ion distribution, and their dynamic behaviors during biological processes. Enhancing the signal-to-noise ratio (SNR) in fluorescence imaging improves the quantification accuracy and spatial resolution; however, achieving high SNR at fast image acquisition rates, which is often required to observe cellular dynamics, still remains a challenge. In this study, we developed a technique to rapidly freeze biological cells in milliseconds during optical microscopy observation. Compared to chemical fixation, rapid freezing provides rapid immobilization of samples while more effectively preserving the morphology and conditions of cells. This technique combines the advantages of both live-cell and cryofixation microscopy, i.e., temporal dynamics and high SNR snapshots of selected moments, and is demonstrated by fluorescence and Raman microscopy with high spatial resolution and quantification under low temperature conditions. Furthermore, we also demonstrated that intracellular calcium dynamics can be frozen rapidly and visualized using fluorescent ion indicators, suggesting that ion distribution and conformation of the probe molecules can be fixed both spatially and temporally. These results confirmed that our technique can time-deterministically suspend and visualize cellular dynamics while preserving molecular and ionic states, indicating the potential to provide detailed insights into sample dynamics with improved spatial resolution and temporal accuracy in observations.
荧光显微镜能够观察生物过程中细胞的形态、分子分布、离子分布及其动态行为。提高荧光成像中的信噪比(SNR)可提高定量准确性和空间分辨率;然而,在快速图像采集速率下实现高SNR,而这通常是观察细胞动态所必需的,仍然是一个挑战。在本研究中,我们开发了一种在光学显微镜观察期间在几毫秒内快速冷冻生物细胞的技术。与化学固定相比,快速冷冻能快速固定样品,同时更有效地保存细胞的形态和状态。该技术结合了活细胞显微镜和冷冻固定显微镜的优点,即时间动态和选定时刻的高SNR快照,并通过低温条件下具有高空间分辨率和定量能力的荧光显微镜和拉曼显微镜得到了证明。此外,我们还证明了细胞内钙动力学可以快速冷冻并用荧光离子指示剂进行可视化,这表明探针分子的离子分布和构象可以在空间和时间上固定。这些结果证实,我们的技术可以在时间上确定性地暂停并可视化细胞动态,同时保留分子和离子状态,这表明在观察中具有以更高的空间分辨率和时间准确性提供对样品动态详细见解的潜力。