Kovtun Viacheslav
Vinnytsia National Technical University, Vinnytsia, Ukraine.
Sci Rep. 2025 Aug 22;15(1):30845. doi: 10.1038/s41598-025-13983-4.
The article presents an adaptive approach to modelling and managing the service process of requests at peripheral nodes of edge-IoT systems. This approach is highly relevant in light of increasing demands for energy efficiency, responsiveness, and self-regulation under unstable traffic conditions. A stochastic G/G/1 model with a parameterised time shift is proposed, accounting for the temporary unavailability of the device prior to request processing. Analytical expressions for key QoS indicators (delay, variability, loss, energy consumption) as functions of the shift parameter are derived, and a multi-factor reward function is constructed. A DQN-based reinforcement learning agent architecture is implemented to dynamically control the shift parameter in a decentralised manner based on the local real-time queue state. Experimental results using real-world datasets demonstrated a reduction in average delay by 17-26%, decreased fluctuations in service time, and improved queue recovery stability after peak loads compared to current state-of-the-art models. The proposed solution is traffic-type agnostic and scalable across edge architectures of varying complexity. The results are suitable for deployment in sensor networks, 5G/6G edge scenarios, and systems with dynamic QoS and energy management.
本文提出了一种自适应方法,用于对边缘物联网系统外围节点的请求服务过程进行建模和管理。鉴于在不稳定流量条件下对能源效率、响应能力和自我调节的需求不断增加,这种方法具有高度相关性。提出了一种具有参数化时间偏移的随机G/G/1模型,该模型考虑了请求处理之前设备的临时不可用性。推导了关键QoS指标(延迟、可变性、损失、能耗)作为偏移参数函数的解析表达式,并构建了多因素奖励函数。实现了一种基于深度Q网络(DQN)的强化学习智能体架构,以基于本地实时队列状态以分散方式动态控制偏移参数。使用真实世界数据集的实验结果表明,与当前最先进的模型相比,平均延迟降低了17%-26%,服务时间波动减小,峰值负载后队列恢复稳定性提高。所提出的解决方案与流量类型无关,并且可以在不同复杂程度的边缘架构中进行扩展。这些结果适用于部署在传感器网络、5G/6G边缘场景以及具有动态QoS和能源管理的系统中。