Kovtun Viacheslav, Yukhimchuk Maria, Alsayaydeh Jamil Abedalrahim Jamil, Berdysheva Dinara
Department of Computer Control Systems, Faculty of Intelligent Information Technologies and Automation, Vinnytsia National Technical University, Vinnytsia, Ukraine.
Department of Engineering Technology, Fakulti Teknologi and Kejuruteraan Elektronik and Komputer (FTKEK), Universiti Teknikal Malaysia Melaka, Durian Tunggal (UTeM), Melaka, Malaysia.
PLoS One. 2025 Aug 29;20(8):e0330526. doi: 10.1371/journal.pone.0330526. eCollection 2025.
This study presents a hybrid stochastic model for evaluating delays and buffering in 5G-IoT ecosystems with programmable P4 switches, where traffic patterns exhibit strong batch-like properties. The proposed approach integrates a batch Markovian arrival process (BMAP) with a phase-type service structure and semi-Markov modelling of control-plane interactions, thereby capturing both the temporal variability of IoT traffic and the hybrid nature of routing logic. Analytical expressions for the expected processing time and queue length were derived using extended G/G/1, H₂/H₂/1, M/G/1, and M/N/1 queueing frameworks. Unlike traditional queueing models, the proposed framework is the first to simultaneously incorporate BMAP-driven bursty arrivals, phase-type service distributions, and semi-Markov representation of control-plane interaction dynamics. This integrated design enables more accurate characterisation of real IoT traffic and significantly improves predictive accuracy. The model was validated on real-world traffic datasets, demonstrating that BMAP more accurately reflects the structure of IoT traffic than classical Poisson or MMPP models. Notably, the BMAP-based approach reduced the modelling error by up to 38% compared to Poisson-based approximations and by 22% compared to MMPP-based ones under bursty traffic conditions. Simulation results confirm that increasing the control-plane involvement probability from 0.2 to 0.7, under a fixed average batch size of 12 requests, leads to a 2.6-fold increase in processing delay. Furthermore, the H₂/H₂/1 model showed the highest alignment with empirical data, accurately reflecting the multi-phase service structure and control flow saturation effects. Additional 3D analyses revealed strong nonlinear dependencies of delay on the batchiness factor, dispersion in processing times, and phase asymmetry parameters.
本研究提出了一种混合随机模型,用于评估具有可编程P4交换机的5G物联网生态系统中的延迟和缓冲,其中流量模式呈现出很强的类批处理特性。所提出的方法将批马尔可夫到达过程(BMAP)与相位型服务结构以及控制平面交互的半马尔可夫建模相结合,从而捕捉物联网流量的时间变异性和路由逻辑的混合性质。使用扩展的G/G/1、H₂/H₂/1、M/G/1和M/N/1排队框架推导出了预期处理时间和队列长度的解析表达式。与传统排队模型不同,所提出的框架首次同时纳入了BMAP驱动的突发到达、相位型服务分布以及控制平面交互动态的半马尔可夫表示。这种集成设计能够更准确地表征实际物联网流量,并显著提高预测准确性。该模型在真实世界的流量数据集上得到了验证,表明BMAP比经典的泊松或MMPP模型更准确地反映了物联网流量的结构。值得注意的是,在突发流量条件下,基于BMAP的方法与基于泊松的近似方法相比,建模误差降低了38%,与基于MMPP的方法相比降低了22%。仿真结果证实,在固定平均批大小为12个请求的情况下,将控制平面参与概率从0.2提高到0.7,会导致处理延迟增加2.6倍。此外,H₂/H₂/1模型与经验数据的一致性最高,准确反映了多阶段服务结构和控制流饱和效应。额外的三维分析揭示了延迟对批处理因子、处理时间分散和相位不对称参数的强烈非线性依赖性。