Suppr超能文献

不同粒径锰铁氧体纳米颗粒用于磁流体热疗的催化活性和加热效率的细胞毒性影响

Cytotoxic Impact of Catalytic Activity and Heating Efficiency of Manganese Ferrite Nanoparticles With Different Particle Sizes for Magnetic Fluid Hyperthermia.

作者信息

Morales Ovalle Marco A, Raineri Mariana, Vasquez Mansilla Marcelo, Winkler Elin Lilian, Zysler Roberto Daniel, Lima Enio, Torres Teobaldo Enrique

机构信息

Instituto Balseiro, CNEA-Universidad Nacional de Cuyo, Centro Atómico Bariloche, Rio Negro, Argentina.

Instituto de Nanociencia y Nanotecnología, Nodo Bariloche, CNEA-CONICET, Centro Atómico Bariloche, Rio Negro, Argentina.

出版信息

J Biomed Mater Res B Appl Biomater. 2025 Sep;113(9):e35638. doi: 10.1002/jbm.b.35638.

Abstract

Magnetic nanoparticles have garnered significant attention in cancer treatment for their dual ability to generate localized heat under an alternating magnetic field and catalyze heterogeneous Fenton-based reactions on their surface. These reactions produce free radicals in mildly acidic and reducing environments, such as the tumor microenvironment, leading to oxidative stress in cancer cells. The synergistic combination of magnetic hyperthermia and catalytic activity enhances oxidative stress induction, underscoring the importance of understanding the cytotoxic effects of this approach. In this study, we performed in vitro toxicity assays on the HepG2 cell line to evaluate cytotoxicity and lipid peroxidation induced by hyperthermia using manganese ferrite nanoparticles with mean sizes of 12 and 28 nm. Magnetic hyperthermia efficiency, quantified by Specific Loss Power (SLP), and catalytic activity, assessed through free radical generation using electron paramagnetic resonance (EPR) and substrate oxidation rates via UV-visible spectroscopy, were characterized prior to the biological experiments. Our results showed that the 28 nm nanoparticles achieved a temperature increase of approximately 11.5°C, compared to 3.6°C for the 12 nm particles. Correspondingly, higher cell death was observed for the 28 nm nanoparticles following magnetic fluid hyperthermia treatment. However, lipid peroxidation was more pronounced with the 12 nm nanoparticles, attributed to their larger surface-to-volume ratio enhancing catalytic performance. In conclusion, nanoparticle size critically influences both magnetic and catalytic properties, and optimizing these parameters is essential for maximizing therapeutic efficacy in magnetic fluid hyperthermia.

摘要

磁性纳米颗粒因其在交变磁场下产生局部热量以及在其表面催化基于非均相芬顿反应的双重能力,在癌症治疗中备受关注。这些反应在轻度酸性和还原性环境(如肿瘤微环境)中产生自由基,导致癌细胞中的氧化应激。磁热疗和催化活性的协同组合增强了氧化应激诱导,凸显了理解这种方法细胞毒性作用的重要性。在本研究中,我们对HepG2细胞系进行了体外毒性试验,以评估使用平均尺寸为12和28 nm的锰铁氧体纳米颗粒进行热疗诱导的细胞毒性和脂质过氧化。在生物实验之前,对通过比损耗功率(SLP)量化的磁热疗效率以及通过电子顺磁共振(EPR)产生自由基和通过紫外可见光谱法测定底物氧化速率评估的催化活性进行了表征。我们的结果表明,28 nm的纳米颗粒温度升高约11.5°C,而12 nm的颗粒为3.6°C。相应地,在磁流体热疗处理后,28 nm的纳米颗粒观察到更高的细胞死亡。然而,12 nm的纳米颗粒脂质过氧化更明显,这归因于它们更大的表面积与体积比增强了催化性能。总之,纳米颗粒尺寸对磁性和催化性能都有至关重要的影响,优化这些参数对于在磁流体热疗中最大化治疗效果至关重要。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验