Gu Xiangyong, Xia Antong, Wu Yanyou, Gratien Twagirayezu, Fan Jing, Wang Chen, Xiang Dongshan, Zhai Kun, Song Xinjian
Hubei Key Laboratory of Selenium Resource Research and Biological Application, Hubei Minzu University, Enshi, China.
School of Chemical and Environmental Engineering, Hubei Minzu University, Enshi, China.
Plant Signal Behav. 2025 Sep 27;20(1):2547384. doi: 10.1080/15592324.2025.2547384. Epub 2025 Aug 23.
Silicon (Si) and selenium selenite (Se) exhibit antagonistic effects on cadmium (Cd). While plant electrophysiological sensors can quantify intracellular water and nutrient metabolism, the dynamic interactions between silicon and selenium in rice under cadmium stress remain unclear. This study focused on a rice variety (Yixiangyou 876, Enshi, Hubei Province, China), examining growth, photosynthesis, Se and Cd transport, and intracellular water and nutrient metabolism under varying silicon concentrations. Compared to Cd stress alone, the application of MSi (10 mM Si and 8 μM Se) increased rice growth, significantly increasing water transfer rate (WTR), nutrient active translocation capacity (NAC), and nutrient transfer rate (NTR) by 148.57%, 192.01%, and 148.57%, respectively. This synergistic treatment promoted Se translocation and decreased Cd concentration. In contrast, HSi (15 mM Si and 8 μM Se) suppressed rice growth, decreasing intracellular water holding capacity (IWHC) and NAC by 33.21% and 46.52%, respectively. Thus, 10 mM Si in combination with Se improved growth, photosynthesis, and intracellular water and nutrient transfer capacity in rice leaves and mitigated cadmium transport. This study provides scientific evidence for Enshi selenium-enriched cadmium-reduced rice. Its core value lies in converting complex physiological processes into quantifiable electrical signals, enabling researchers and farmers to precisely regulate the absorption and metabolism of selenium and cadmium in rice, ultimately achieving the agricultural goal of "high-quality, safe, and efficient" selenium-enriched agriculture.
硅(Si)和亚硒酸钠(Se)对镉(Cd)具有拮抗作用。虽然植物电生理传感器可以量化细胞内的水分和养分代谢,但镉胁迫下水稻中硅和硒之间的动态相互作用仍不清楚。本研究聚焦于一个水稻品种(中国湖北省恩施市的宜香优876),研究了不同硅浓度下水稻的生长、光合作用、硒和镉的转运以及细胞内水分和养分代谢。与单独的镉胁迫相比,施用MSi(10 mM硅和8 μM硒)促进了水稻生长,水分转运速率(WTR)、养分主动转运能力(NAC)和养分转运速率(NTR)分别显著提高了148.57%、192.01%和148.57%。这种协同处理促进了硒的转运并降低了镉浓度。相比之下,HSi(15 mM硅和8 μM硒)抑制了水稻生长,细胞内持水能力(IWHC)和NAC分别降低了33.21%和46.52%。因此,10 mM硅与硒结合可改善水稻叶片的生长、光合作用以及细胞内水分和养分转运能力,并减轻镉的转运。本研究为宜昌富硒降镉水稻提供了科学依据。其核心价值在于将复杂的生理过程转化为可量化的电信号,使研究人员和农民能够精确调节水稻中硒和镉的吸收与代谢,最终实现“优质、安全、高效”富硒农业的农业目标。