Suppr超能文献

生成式人工智能在协助健康研究系统评价过程中的作用:一项系统评价

Role of Generative Artificial Intelligence in Assisting Systematic Review Process in Health Research: A Systematic Review.

作者信息

Rashid Muhammed, Yi Cheng Su, Sathapanasiri Thipsukhon, Udayachalerm Sariya, Boonpattharatthiti Kansak, Insuk Suppachai, Veettil Sajesh K, Lai Nai Ming, Chaiyakunapruk Nathorn, Dhippayom Teerapon

机构信息

Department of Pharmacotherapy, College of Pharmacy, University of Utah, Salt Lake City, UT, USA.

Independent Researcher, Kuala Lumpur, Malaysia.

出版信息

Value Health. 2025 Aug 13. doi: 10.1016/j.jval.2025.07.001.

Abstract

OBJECTIVES

Artificial intelligence (AI) is widely used in healthcare for various purposes, with generative AI (GAI) increasingly being applied to systematic review (SR) processes. We aimed to summarize the evidence on the performance metrics of GAI in the SR process.

METHODS

PubMed, EMBASE, Scopus, and ProQuest Dissertations & Theses Global were searched from their inception up to March 2025. Only experimental studies that compared GAI with other GAIs or human reviewers at any stage of the SR were included. Modified Quality Assessment of Diagnostic Accuracy Studies version 2 was used to assess the quality of the studies that used GAI in the study selection process. We summarized the findings of the included studies using a narrative approach.

RESULTS

Out of 7418 records screened, 30 studies were included. These studies used GAI tools such as ChatGPT, Bard, and Microsoft Bing AI. GAI appears to be effective for participant, intervention, comparator, and outcome formulation and data extraction processes, including complex information. However, because of inconsistent reliability, GAI is not recommended for literature search and study selection as it may retrieve nonrelevant articles and yield inconsistent results. There was mixed evidence on whether GAI can be used for risk of bias assessment. Studies using GAI for study selection were generally of high quality based on the modified Quality Assessment of Diagnostic Accuracy Studies version 2.

CONCLUSIONS

GAI shows promising support in participant, intervention, comparator, and outcome-based question formulation and data extraction. Although it holds potential to enhance the SR process in healthcare, further practical application and validated evidence are needed before it can be fully integrated into standard workflows.

摘要

目的

人工智能(AI)在医疗保健领域有广泛应用,生成式人工智能(GAI)越来越多地应用于系统评价(SR)过程。我们旨在总结关于GAI在SR过程中性能指标的证据。

方法

检索了PubMed、EMBASE、Scopus和ProQuest Dissertations & Theses Global自创建至2025年3月的文献。仅纳入在SR的任何阶段将GAI与其他GAI或人类评审员进行比较的实验研究。使用改良版诊断准确性研究质量评估2来评估在研究选择过程中使用GAI的研究的质量。我们采用叙述性方法总结纳入研究的结果。

结果

在筛选的7418条记录中,纳入了30项研究。这些研究使用了ChatGPT、Bard和Microsoft Bing AI等GAI工具。GAI似乎在参与者、干预措施、对照和结局的制定以及数据提取过程(包括复杂信息)中有效。然而,由于可靠性不一致,不建议将GAI用于文献检索和研究选择,因为它可能检索到不相关的文章并产生不一致的结果。关于GAI是否可用于偏倚风险评估,证据不一。根据改良版诊断准确性研究质量评估2,使用GAI进行研究选择的研究总体质量较高。

结论

GAI在基于参与者、干预措施、对照和结局的问题制定以及数据提取方面显示出有前景的支持。尽管它有潜力增强医疗保健领域的SR过程,但在完全整合到标准工作流程之前,还需要进一步的实际应用和经过验证的证据。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验