Subia Bano, Patel Ankit, Nathwani Simran, Ghoshdastidar Krishnarup, Jain Mukul, Viswanathan Kasinath
Zydus Research Centre, Zydus Life Sciences, Ahmedabad, Gujarat, 382210, India.
Hum Cell. 2025 Aug 23;38(5):149. doi: 10.1007/s13577-025-01277-w.
Most drug discovery studies use 2D cell cultures and animal models for screening new chemical entities (NCEs), which often leads to suboptimal results due to genetic variations, species differences, or lack of most physiological preclinical models. This is one of the most important reasons behind high rate of failure of drug candidate in the clinic, especially in oncology drug development projects. To address this issue, we developed a 3D pancreatic tumor spheroid model that better mimics the parental tumor architecture. We observed similar drug effects on cellular viability in both 2D cultures and 3D spheroids. However, cellular viability alone is insufficient to predict the translation of efficacy into clinical studies. A 3D multicellular tumor model is essential to comprehensively evaluate drug effects on the tumor microenvironment (TME), angiogenesis, and tumor biomarkers. Our model includes 3D monocellular and multicellular spheroids, which demonstrated a more relevant platform for potency evaluation. We used pancreatic ductal adenocarcinoma cells PANC-1 and PANC04.03 to conduct a comprehensive drug screening and assessed spheroid shrinkage and pre-vascularization. We also evaluated RT-qPCR analysis for gene expression of CSC markers (CD44, SOX2, KRT18), EMT markers (αSMA, vimentin) and the apoptotic marker (Annexin A1) under various conditions. Our findings highlighted the significant differences between 2D and 3D cultures, underscoring the importance of 3D multicellular models for predicting therapeutic markers and enabling comprehensive drug evaluation. In this study, MRTX1133 (a Phase I candidate of KRAS-G12D inhibitor) was used for testing our hypothesis. Treating the spheroids with MRTX1133 revealed enhanced drug response profiles compared to 2D cultures. This study underscores the critical importance of 3D multicellular model in preclinical drug screening and their potential to bridge the gap between in vitro studies and clinical outcomes.
大多数药物发现研究使用二维细胞培养和动物模型来筛选新的化学实体(NCEs),由于基因变异、物种差异或缺乏大多数生理临床前模型,这往往导致结果不理想。这是临床中候选药物高失败率背后最重要的原因之一,尤其是在肿瘤学药物开发项目中。为了解决这个问题,我们开发了一种三维胰腺肿瘤球体模型,它能更好地模拟亲本肿瘤结构。我们在二维培养和三维球体中观察到对细胞活力的类似药物作用。然而,仅细胞活力不足以预测疗效转化为临床研究的情况。三维多细胞肿瘤模型对于全面评估药物对肿瘤微环境(TME)、血管生成和肿瘤生物标志物的作用至关重要。我们的模型包括三维单细胞和多细胞球体,它们展示了一个更适合药效评估的平台。我们使用胰腺导管腺癌细胞PANC-1和PANC04.03进行全面的药物筛选,并评估球体收缩和血管前形成。我们还在各种条件下评估了RT-qPCR分析CSC标志物(CD44、SOX2、KRT18)、EMT标志物(αSMA、波形蛋白)和凋亡标志物(膜联蛋白A1)的基因表达。我们的研究结果突出了二维和三维培养之间的显著差异,强调了三维多细胞模型在预测治疗标志物和实现全面药物评估方面的重要性。在这项研究中,MRTX1133(一种KRAS-G12D抑制剂的I期候选药物)被用于检验我们的假设。用MRTX1133处理球体显示出与二维培养相比增强的药物反应谱。这项研究强调了三维多细胞模型在临床前药物筛选中的关键重要性及其弥合体外研究与临床结果之间差距的潜力。