Yuwen Lihui, Liu Yuan, Zhang Qi, Xu Xiaoxiao, Lu Liang, Qiusong Yirui, Li Wen, Yang Dongliang, Wang Lianhui
State Key Laboratory of Flexible Electronics (LoFE) & Jiangsu Key Laboratory of Smart Biomaterials and Theranostic Technology, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China.
Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), School of Physical and Mathematical Sciences, Nanjing Tech University (NanjingTech), Nanjing 211816, China.
J Control Release. 2025 Oct 10;386:114152. doi: 10.1016/j.jconrel.2025.114152. Epub 2025 Aug 21.
Bacteria colonizing medical implants usually lead to biofilm formation and result in persistent infections. Conventional antibiotics often fail to effectively accumulate and penetrate the extracellular polymeric barriers of bacterial biofilms. Thus, there is an urgent need to develop effective antibiotic delivery systems capable of biofilm targeting and disruption. Herein, mesoporous FeO nanoparticles (mFe NPs) were used to co-load perfluoropentane (PFP) and ciprofloxacin (Cip), constructing magnetic field (MF)/ultrasound (US) dual-responsive mFeP-Cip NPs for eradicating Pseudomonas aeruginosa (PAO1) biofilms on catheter implants. Under magnetic guidance, mFeP-Cip NPs can precisely target PAO1 biofilms. Subsequent US exposure triggers PFP phase transition and vaporization, which disrupts biofilm structure via cavitation effects, thereby enhancing Cip penetration. In a 96-well plate PAO1 biofilm model, the combination of mFeP-Cip NPs with MF/US reduced biofilm biomass and viable bacterial counts by 59 % and 99.9992 %, respectively, while demonstrating efficient biofilm elimination on medical catheters. In a catheter PAO1 infection model in mice, mFeP-Cip NPs achieved a 99.994 % antibacterial efficiency under MF/US stimulation. Additionally, mFeP-Cip NPs exhibited excellent biocompatibility. This work presents an MF/US dual-responsive antibiotic delivery system that synergizes magnetic targeting with US-enhanced antibiotic permeation, offering a promising nanotherapeutic platform for precise and efficient treatment of biofilm-associated infections.
定植于医用植入物上的细菌通常会导致生物膜形成,并引发持续性感染。传统抗生素往往无法有效积聚并穿透细菌生物膜的细胞外聚合物屏障。因此,迫切需要开发能够靶向和破坏生物膜的有效抗生素递送系统。在此,使用介孔FeO纳米颗粒(mFe NPs)共负载全氟戊烷(PFP)和环丙沙星(Cip),构建磁场(MF)/超声(US)双响应的mFeP-Cip NPs,用于根除导管植入物上的铜绿假单胞菌(PAO1)生物膜。在磁引导下,mFeP-Cip NPs可以精确靶向PAO1生物膜。随后的超声照射触发PFP相变和汽化,通过空化效应破坏生物膜结构,从而增强Cip的渗透。在96孔板PAO1生物膜模型中,mFeP-Cip NPs与MF/US联合使用可使生物膜生物量和活菌数分别降低59%和99.9992%,同时在医用导管上显示出高效的生物膜清除效果。在小鼠导管PAO1感染模型中,mFeP-Cip NPs在MF/US刺激下实现了99.994%的抗菌效率。此外,mFeP-Cip NPs表现出优异的生物相容性。这项工作提出了一种MF/US双响应抗生素递送系统,该系统将磁靶向与超声增强的抗生素渗透相结合,为精确高效治疗生物膜相关感染提供了一个有前景的纳米治疗平台。