Bertamini Giulio, Perzolli Silvia, Bentenuto Arianna, Furlanello Cesare, Chetouani Mohamed, Venuti Paola, Cohen David
Department of Child and Adolescent Psychiatry, Pitié-Salpêtrière University Hospital, Sorbonne University, 47-83 Bd de l'Hôpital, Paris, 75013, Île-de-France, France.
Laboratory of Observation, Diagnosis, and Education, Department of Psychology and Cognitive Science, University of Trento, Via Matteo del Ben, 5B, Rovereto, 38068, TN, Italy.
Sci Rep. 2025 Aug 24;15(1):31144. doi: 10.1038/s41598-025-17057-3.
The patient-therapist interpersonal dynamics is a cornerstone of psychotherapy, yet how it shapes clinical outcomes remains underexplored and difficult to quantify. This is also true in autism, where interpersonal interplay is recognized as an active element of intervention. Moreover, behavioral research is time-consuming and labor-intensive, limiting its translational applications. We studied 25 autistic preschoolers (17 therapists) across two naturalistic 60-minute sessions of developmental intervention at baseline and after three months (50 videos total). Clinical outcomes were assessed at baseline and one year into intervention. We developed a fully automated pipeline combining deep learning and affective computing to: (i) segment full-session audio recordings, (ii) model child-clinician acoustic synchrony using nonlinear metrics grounded in complex systems theory, and (iii) predict long-term response from early synchrony patterns. Changes in early synchrony dynamics predicted clinical response. Better outcomes were associated with synchrony patterns reflecting increased variability, predictability, and self-organization alongside prosodic features linked to emotional engagement. Our scalable, non-invasive system enables large-scale, objective measurement of therapy dynamics. In autism, our findings emphasize the importance of early interpersonal synchrony and emotional engagement as active drivers of developmental change. Our approach captures the full dynamics of entire therapy sessions, providing a richer, ecologically valid view of interpersonal synchrony.
患者与治疗师之间的人际互动是心理治疗的基石,然而其如何塑造临床结果仍未得到充分探索且难以量化。在自闭症领域亦是如此,人际互动被视为干预的一个积极要素。此外,行为研究既耗时又费力,限制了其转化应用。我们对25名自闭症学龄前儿童(17名治疗师)进行了研究,在基线期和三个月后进行了两次时长60分钟的自然主义发展干预课程(共50个视频)。在基线期和干预一年后评估临床结果。我们开发了一个结合深度学习和情感计算的全自动流程,以:(i)分割整个课程的音频记录,(ii)使用基于复杂系统理论的非线性指标对儿童与临床医生的声学同步性进行建模,以及(iii)根据早期同步模式预测长期反应。早期同步动态的变化可预测临床反应。更好的结果与同步模式相关,这些模式反映出变异性、可预测性和自组织性增加,以及与情感投入相关的韵律特征。我们可扩展的、非侵入性系统能够对治疗动态进行大规模、客观的测量。在自闭症领域,我们的研究结果强调了早期人际同步和情感投入作为发展变化的积极驱动因素的重要性。我们的方法捕捉了整个治疗课程的完整动态,提供了一个更丰富、生态效度更高的人际同步视角。