Suppr超能文献

基于混合优先聚类建模方法的复合催化剂氢气预冷液化过程实验分析与优化

Experimental analysis and optimization of hydrogen pre-cooling liquefaction process with composite catalyst through a hybrid priority cluster modeling approach.

作者信息

Khan Faisal, Khan Osama, Pachauri Praveen, Parvez Mohd, Alhodaib Aiyeshah, Yahya Zeinebou, Howari Haidar, Idrisi M Javed, Tenna Worku

机构信息

Department of Mechanical Engineering, Jamia Millia Islamia, New Delhi, 110025, India.

Government Polytechnic Siwan, Department of Science, Technology and Technical Education, Government of Bihar, Patna, Bihar, India.

出版信息

Sci Rep. 2025 Aug 24;15(1):31093. doi: 10.1038/s41598-025-16832-6.

Abstract

The analysis studies impact of nanocomposites (NCs) to improve thermal efficiency in hydrogen liquefaction while decreasing energy consumption. The study uses an innovative combination of experimental investigations coupled with machine learning methods to identify superior nanocomposites for their peak performance characteristics. Experimental data measurement of key thermophysical characteristics are estimated by using Pearson's-r correlation analysis. The weightage analysis obtained through the MEREC analysis. The priority weights obtained for the inputs are concentration of nano-additives concentration at 33% while flow rates take 29% and pressure receives 23% and temperature stands at 14%. The optimum input operating characteristics were found in combination 9, with pressure of 0.23 MPa, temperature of 260 K, flow rate of 0.11 kg/s, and NC concentration of 0.24 wt%, leading to the most efficient performance in the hydrogen precooling process. The combination of Graphene/TiO (Anatase) with g-CN/TiO (Graphitic) and SiC/TiO (Silicon Carbide) nano-additives delivering optimum energy consumption and coefficient of performance of 2.70 kWh/kgLH and 5. Effective heat transfer combined with reduced energy losses from integrating these NCs leads to more sustainable and cost-effective hydrogen liquefaction. New energy infrastructure designs benefits from these findings that support hydrogen as a clean energy vector while enhancing industrial liquefaction procedures.

摘要

该分析研究了纳米复合材料(NCs)在提高氢液化热效率同时降低能耗方面的影响。该研究采用了实验研究与机器学习方法的创新组合,以识别具有卓越性能特征的纳米复合材料。通过皮尔逊相关分析估计关键热物理特性的实验数据测量值。通过MEREC分析获得权重分析。输入的优先权重为纳米添加剂浓度33%,流速占29%,压力占23%,温度占14%。在组合9中发现了最佳输入操作特性,压力为0.23MPa,温度为260K,流速为0.11kg/s,NC浓度为0.24wt%,从而在氢预冷过程中实现了最高效的性能。石墨烯/TiO(锐钛矿型)与g-CN/TiO(石墨型)和SiC/TiO(碳化硅)纳米添加剂的组合实现了最佳能耗,性能系数为2.70kWh/kgLH和5。有效传热与整合这些NCs带来的能量损失减少相结合,使氢液化更具可持续性和成本效益。新能源基础设施设计受益于这些发现,这些发现支持氢作为清洁能源载体,同时改进工业液化程序。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e126/12375728/da7e289033ee/41598_2025_16832_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验