Suppr超能文献

采用三级级联混合制冷剂循环对先进氢液化进行比较研究,并进行集成能量、㶲、经济和环境分析。

Comparative study of advanced hydrogen liquefaction using triple cascade mixed refrigerant cycles with integrated energy exergy economic and environmental analysis.

作者信息

Ismail M Shawky, ElSeuofy M Abd ElSalam, Attia Abd ElHamid, ElMaghlany Wael, ElHelw Mohamed

机构信息

Mechanical Engineering Department, Faculty of Engineering, Alexandria University, Alexandria, 21544, Egypt.

出版信息

Sci Rep. 2025 Sep 1;15(1):32068. doi: 10.1038/s41598-025-14258-8.

Abstract

Hydrogen, as a clean energy source, is recognized as a pivotal energy carrier in the global transition to sustainable energy systems and serves as a crucial pathway for energy storage and efficient utilization within cryogenic systems. Hydrogen liquefaction is one of the most promising methods for increasing its energy density, enabling more efficient storage, transportation, and utilization in large-scale energy systems. However, substantial challenges persist, particularly regarding the high energy consumption associated with the liquefaction process. This study addresses these challenges by proposing two designs for a triple-cascade mixed refrigerant cycle aimed explicitly at reducing energy consumption for high-density hydrogen storage: 66.7 kg/m at - 245 °C (Case 1) and 76 kg/m at - 249 °C (Case 2). The proposed systems utilize two mixed refrigerant cycles for the precooling and cryogenic stages. In Case 1, pure nitrogen is employed as the third refrigerant in the precooling stage, whereas Case 2 incorporates a regenerative cryogenic hydrogen cycle as the third refrigerant throughout the entire system, coupled with a carbon dioxide cycle for compressor cooling. Simulations were conducted using Aspen HYSYS, with optimization through the Aspen Optimizer algorithm. The results indicate that Case 1 achieves a specific energy consumption (SEC) of 6.98 kWh/kgH₂, representing a 17.4% reduction from the baseline, while Case 2 reduces SEC to 6.19 kWh/kgH₂, a 14.5% decrease. The exergy analysis of the heat exchangers shows a 37% reduction in exergy destruction in Case 2 compared to Case 1. Additionally, Case 2 demonstrates a 5.8% reduction in capital expenditure and a 22% reduction in carbon footprint (CFP). These findings highlight the potential of the proposed triple-cascade process to enhance energy efficiency, improve both thermodynamic and economic performance, and reduce environmental impact.

摘要

氢气作为一种清洁能源,被公认为是全球向可持续能源系统转型过程中的关键能量载体,也是低温系统中能量存储和高效利用的重要途径。氢气液化是提高其能量密度最具前景的方法之一,能在大规模能源系统中实现更高效的存储、运输和利用。然而,仍存在诸多重大挑战,尤其是与液化过程相关的高能耗问题。本研究针对这些挑战,提出了两种用于三复叠混合制冷剂循环的设计方案,旨在明确降低高密度储氢的能耗:在-245°C时为66.7 kg/m³(案例1),在-249°C时为76 kg/m³(案例2)。所提出的系统在预冷和低温阶段采用了两个混合制冷剂循环。在案例1中,纯氮气被用作预冷阶段的第三种制冷剂,而案例2在整个系统中采用再生低温氢气循环作为第三种制冷剂,并结合二氧化碳循环用于压缩机冷却。使用Aspen HYSYS进行了模拟,并通过Aspen Optimizer算法进行了优化。结果表明,案例1的比能耗(SEC)为6.98 kWh/kgH₂,比基线降低了17.4%,而案例2将SEC降低至6.19 kWh/kgH₂,降低了14.5%。换热器的㶲分析表明,案例2的㶲损失比案例1减少了37%。此外,案例2的资本支出降低了5.8%,碳足迹(CFP)降低了22%。这些发现凸显了所提出的三复叠工艺在提高能源效率、改善热力学和经济性能以及减少环境影响方面的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c998/12402326/a22e0fc43c33/41598_2025_14258_Fig2_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验