Panagiotou Sotirios, Miedema Rene, Soudris Dimitrios, Strydis Christos
Neuroscience Department, Neurocomputing Lab, Erasmus MC, Rotterdam, Netherlands.
Microlab, School of Electrical & Computer Engineering, National Technical University of Athens, Athens, Greece.
Front Neuroinform. 2025 Aug 7;19:1572782. doi: 10.3389/fninf.2025.1572782. eCollection 2025.
Computational-neuroscience simulators have traditionally been constrained by tightly coupled simulation engines and modeling languages, limiting their flexibility and scalability. Retrofitting these platforms to accommodate new backends is often costly, and sharing models across simulators remains cumbersome. This paper puts forward an alternative approach based on the EDEN neural simulator, which introduces a modular stack that decouples abstract model descriptions from execution. This architecture enhances flexibility and extensibility by enabling seamless integration of multiple backends, including hardware accelerators, without extensive reprogramming. Through the use of NeuroML, simulation developers can focus on high-performance execution, while model users benefit from improved portability without the need to implement custom simulation engines. Additionally, the proposed method for incorporating arbitrary simulation platforms-from model-optimized code kernels to custom hardware devices-as backends offers a more sustainable and adaptable framework for the computational-neuroscience community. The effectiveness of EDEN's approach is demonstrated by integrating two distinct backends: flexHH, an FPGA-based accelerator for extended Hodgkin-Huxley networks, and SpiNNaker, the well-known, neuromorphic platform for large-scale spiking neural networks. Experimental results show that EDEN integrates the different backends with minimal effort while maintaining competitive performance, reaffirming it as a robust, extensible platform that advances the design paradigm for neural simulators by achieving high generality, performance, and usability.
传统上,计算神经科学模拟器受到紧密耦合的模拟引擎和建模语言的限制,这限制了它们的灵活性和可扩展性。对这些平台进行改造以适应新的后端通常成本高昂,并且在不同模拟器之间共享模型仍然很麻烦。本文提出了一种基于EDEN神经模拟器的替代方法,该方法引入了一个模块化堆栈,将抽象模型描述与执行解耦。这种架构通过实现包括硬件加速器在内的多个后端的无缝集成,增强了灵活性和可扩展性,而无需进行大量重新编程。通过使用NeuroML,模拟开发人员可以专注于高性能执行,而模型用户则受益于更高的可移植性,而无需实现自定义模拟引擎。此外,所提出的将任意模拟平台(从模型优化的代码内核到定制硬件设备)作为后端纳入的方法,为计算神经科学界提供了一个更具可持续性和适应性的框架。通过集成两个不同的后端来证明EDEN方法的有效性:flexHH,一种用于扩展霍奇金 - 赫胥黎网络的基于FPGA的加速器,以及SpiNNaker,著名的用于大规模脉冲神经网络的神经形态平台。实验结果表明,EDEN以最小的努力集成了不同的后端,同时保持了有竞争力的性能,再次证明它是一个强大、可扩展的平台,通过实现高通用性、性能和可用性,推动了神经模拟器的设计范式。