Suppr超能文献

在网络环境中,爬行纤维爆发大小和橄榄下阈振荡。

Climbing fiber burst size and olivary sub-threshold oscillations in a network setting.

机构信息

Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands.

出版信息

PLoS Comput Biol. 2012;8(12):e1002814. doi: 10.1371/journal.pcbi.1002814. Epub 2012 Dec 13.

Abstract

The inferior olivary nucleus provides one of the two main inputs to the cerebellum: the so-called climbing fibers. Activation of climbing fibers is generally believed to be related to timing of motor commands and/or motor learning. Climbing fiber spikes lead to large all-or-none action potentials in cerebellar Purkinje cells, overriding any other ongoing activity and silencing these cells for a brief period of time afterwards. Empirical evidence shows that the climbing fiber can transmit a short burst of spikes as a result of an olivary cell somatic spike, potentially increasing the information being transferred to the cerebellum per climbing fiber activation. Previously reported results from in vitro studies suggested that the information encoded in the climbing fiber burst is related to the occurrence of the spike relative to the ongoing sub-threshold membrane potential oscillation of the olivary cell, i.e. that the phase of the oscillation is reflected in the size of the climbing fiber burst. We used a detailed three-compartmental model of an inferior olivary cell to further investigate the possible factors determining the size of the climbing fiber burst. Our findings suggest that the phase-dependency of the burst size is present but limited and that charge flow between soma and dendrite is a major determinant of the climbing fiber burst. From our findings it follows that phenomena such as cell ensemble synchrony can have a big effect on the climbing fiber burst size through dendrodendritic gap-junctional coupling between olivary cells.

摘要

橄榄下核为小脑提供了两个主要输入之一

所谓的 climbing fibers(攀缘纤维)。激活 climbing fibers(攀缘纤维)通常被认为与运动指令的定时和/或运动学习有关。Climbing fibers(攀缘纤维)的尖峰导致小脑浦肯野细胞的全或无的大动作电位,覆盖任何其他正在进行的活动,并在随后的短暂时间内使这些细胞沉默。经验证据表明,由于橄榄细胞体尖峰的发生,climbing fibers(攀缘纤维)可以传递短的爆发尖峰,从而潜在地增加每个 climbing fibers(攀缘纤维)激活传递到小脑的信息量。先前的体外研究结果表明,climbing fibers(攀缘纤维)爆发中编码的信息与尖峰相对于橄榄细胞持续的亚阈值膜电位振荡的发生有关,即振荡的相位反映在 climbing fibers(攀缘纤维)爆发的大小中。我们使用详细的橄榄下核三房室模型进一步研究了决定 climbing fibers(攀缘纤维)爆发大小的可能因素。我们的研究结果表明,爆发大小的相位依赖性是存在的,但有限的,并且体和树突之间的电荷流动是 climbing fibers(攀缘纤维)爆发的主要决定因素。从我们的研究结果可以看出,细胞集合同步等现象可以通过橄榄细胞之间的树突树突缝隙连接耦合对 climbing fibers(攀缘纤维)爆发大小产生重大影响。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b95c/3521668/03af0f03df82/pcbi.1002814.g001.jpg

相似文献

1
Climbing fiber burst size and olivary sub-threshold oscillations in a network setting.
PLoS Comput Biol. 2012;8(12):e1002814. doi: 10.1371/journal.pcbi.1002814. Epub 2012 Dec 13.
2
Association between dendritic lamellar bodies and complex spike synchrony in the olivocerebellar system.
J Neurophysiol. 1997 Apr;77(4):1747-58. doi: 10.1152/jn.1997.77.4.1747.
3
Olivary subthreshold oscillations and burst activity revisited.
Front Neural Circuits. 2012 Nov 22;6:91. doi: 10.3389/fncir.2012.00091. eCollection 2012.
4
Reading the clock: how Purkinje cells decode the phase of olivary oscillations.
Neuron. 2009 May 14;62(3):308-9. doi: 10.1016/j.neuron.2009.04.020.
7
Encoding of oscillations by axonal bursts in inferior olive neurons.
Neuron. 2009 May 14;62(3):388-99. doi: 10.1016/j.neuron.2009.03.023.
8
Complex Spike Wars: a New Hope.
Cerebellum. 2018 Dec;17(6):735-746. doi: 10.1007/s12311-018-0960-3.
9
How inhibitory and excitatory inputs gate output of the inferior olive.
Elife. 2023 Aug 1;12:e83239. doi: 10.7554/eLife.83239.
10
Integration of Purkinje cell inhibition by cerebellar nucleo-olivary neurons.
J Neurosci. 2015 Jan 14;35(2):544-9. doi: 10.1523/JNEUROSCI.3583-14.2015.

引用本文的文献

1
Decoupling model descriptions from execution: a modular paradigm for extensible neurosimulation with EDEN.
Front Neuroinform. 2025 Aug 7;19:1572782. doi: 10.3389/fninf.2025.1572782. eCollection 2025.
2
Stepwise molecular specification of excitatory synapse diversity onto cerebellar Purkinje cells.
Nat Neurosci. 2025 Feb;28(2):308-319. doi: 10.1038/s41593-024-01826-w. Epub 2024 Dec 10.
3
4
How inhibitory and excitatory inputs gate output of the inferior olive.
Elife. 2023 Aug 1;12:e83239. doi: 10.7554/eLife.83239.
5
Purkinje Cell Activity Resonation Generates Rhythmic Behaviors at the Preferred Frequency of 8 Hz.
Biomedicines. 2022 Jul 29;10(8):1831. doi: 10.3390/biomedicines10081831.
6
The Cerebellar Cortex.
Annu Rev Neurosci. 2022 Jul 8;45:151-175. doi: 10.1146/annurev-neuro-091421-125115.
7
Population calcium responses of Purkinje cells in the oculomotor cerebellum driven by nonvisual input.
J Neurophysiol. 2021 Oct 1;126(4):1391-1402. doi: 10.1152/jn.00715.2020. Epub 2021 Aug 4.
8
Real-Time Simulation of a Cerebellar Scaffold Model on Graphics Processing Units.
Front Cell Neurosci. 2021 Apr 7;15:623552. doi: 10.3389/fncel.2021.623552. eCollection 2021.
9
Imaging Subthreshold Voltage Oscillation With Cellular Resolution in the Inferior Olive .
Front Cell Neurosci. 2020 Dec 14;14:607843. doi: 10.3389/fncel.2020.607843. eCollection 2020.
10
Synchronization of Electrically Coupled Resonate-and-Fire Neurons.
SIAM J Appl Dyn Syst. 2019;18(3):1643-1693. doi: 10.1137/18m1197412. Epub 2019 Sep 26.

本文引用的文献

1
The generation of phase differences and frequency changes in a network model of inferior olive subthreshold oscillations.
PLoS Comput Biol. 2012;8(7):e1002580. doi: 10.1371/journal.pcbi.1002580. Epub 2012 Jul 5.
2
Spatiotemporal firing patterns in the cerebellum.
Nat Rev Neurosci. 2011 Jun;12(6):327-44. doi: 10.1038/nrn3011. Epub 2011 May 5.
3
The extent and strength of electrical coupling between inferior olivary neurons is heterogeneous.
J Neurophysiol. 2011 Mar;105(3):1089-101. doi: 10.1152/jn.00789.2010. Epub 2010 Dec 22.
5
Ca(V)3.1 is a tremor rhythm pacemaker in the inferior olive.
Proc Natl Acad Sci U S A. 2010 Jun 8;107(23):10731-6. doi: 10.1073/pnas.1002995107. Epub 2010 May 24.
6
Encoding of oscillations by axonal bursts in inferior olive neurons.
Neuron. 2009 May 14;62(3):388-99. doi: 10.1016/j.neuron.2009.03.023.
7
Reading the clock: how Purkinje cells decode the phase of olivary oscillations.
Neuron. 2009 May 14;62(3):308-9. doi: 10.1016/j.neuron.2009.04.020.
8
Invariant phase structure of olivo-cerebellar oscillations and its putative role in temporal pattern generation.
Proc Natl Acad Sci U S A. 2009 Mar 3;106(9):3579-84. doi: 10.1073/pnas.0806661106. Epub 2009 Feb 10.
9
Role of olivary electrical coupling in cerebellar motor learning.
Neuron. 2008 May 22;58(4):599-612. doi: 10.1016/j.neuron.2008.03.016.
10
Intraburst and interburst signaling by climbing fibers.
J Neurosci. 2007 Oct 17;27(42):11263-70. doi: 10.1523/JNEUROSCI.2559-07.2007.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验