Suppr超能文献

一种基于神经网络集成的加速失效时间混合治愈模型。

A Neural Network Integrated Accelerated Failure Time-Based Mixture Cure Model.

作者信息

Aselisewine Wisdom, Pal Suvra

机构信息

Department of Mathematics, University of Texas at Arlington, Arlington, TX 76019, United States.

Division of Data Science, College of Science, University of Texas at Arlington, Arlington, TX 76019, United States.

出版信息

Stat Comput. 2025 Oct;35(5). doi: 10.1007/s11222-025-10674-y. Epub 2025 Jun 22.

Abstract

The mixture cure rate model (MCM) is commonly used for analyzing survival data with a cured subgroup. While the prevailing approach to modeling the probability of cure involves a generalized linear model using a known parametric link function, such as the logit link function, it has limitations in capturing the complex effects of covariates on cure probability. This paper introduces a novel MCM employing a neural network-based classifier for cure probability and an accelerated failure time structure for the survival distribution of uncured patients. An expectation maximization algorithm is developed for parameter estimation. Simulation results demonstrate the superior performance of the proposed model in capturing non-linear classification boundaries compared to logit-based and spline-based MCMs, as well as other machine learning algorithms. This enhances the accuracy and precision of cured probability estimates, improving predictive accuracy. The proposed model and estimation method are applied to survival data on leukemia cancer patients, showcasing their effectiveness.

摘要

混合治愈率模型(MCM)通常用于分析具有治愈亚组的生存数据。虽然目前对治愈概率建模的方法涉及使用已知参数链接函数(如对数链接函数)的广义线性模型,但它在捕捉协变量对治愈概率的复杂影响方面存在局限性。本文介绍了一种新颖的MCM,它采用基于神经网络的分类器来估计治愈概率,并采用加速失效时间结构来描述未治愈患者的生存分布。开发了一种期望最大化算法进行参数估计。模拟结果表明,与基于对数和样条的MCM以及其他机器学习算法相比,所提出的模型在捕捉非线性分类边界方面具有优越性能。这提高了治愈概率估计的准确性和精度,提升了预测精度。所提出的模型和估计方法应用于白血病癌症患者的生存数据,展示了它们的有效性。

相似文献

1
A Neural Network Integrated Accelerated Failure Time-Based Mixture Cure Model.
Stat Comput. 2025 Oct;35(5). doi: 10.1007/s11222-025-10674-y. Epub 2025 Jun 22.
2
A semiparametric accelerated failure time-based mixture cure tree.
J Appl Stat. 2024 Oct 23;52(6):1177-1194. doi: 10.1080/02664763.2024.2418476. eCollection 2025.
3
A New Approach to Modeling the Cure Rate in the Presence of Interval Censored Data.
Comput Stat. 2024 Jul;39(5):2743-2769. doi: 10.1007/s00180-023-01389-7. Epub 2023 Jul 15.

本文引用的文献

1
A semiparametric accelerated failure time-based mixture cure tree.
J Appl Stat. 2024 Oct 23;52(6):1177-1194. doi: 10.1080/02664763.2024.2418476. eCollection 2025.
2
Likelihood Inference for Unified Transformation Cure Model with Interval Censored Data.
Comput Stat. 2025 Jan;40(1):125-151. doi: 10.1007/s00180-024-01480-7. Epub 2024 Mar 25.
3
Enhancing Cure Rate Analysis Through Integration of Machine Learning Models: A Comparative Study.
Stat Comput. 2024 Aug;34(4). doi: 10.1007/s11222-024-10456-y. Epub 2024 Jun 25.
4
A New Approach to Modeling the Cure Rate in the Presence of Interval Censored Data.
Comput Stat. 2024 Jul;39(5):2743-2769. doi: 10.1007/s00180-023-01389-7. Epub 2023 Jul 15.
5
A support vector machine-based cure rate model for interval censored data.
Stat Methods Med Res. 2023 Dec;32(12):2405-2422. doi: 10.1177/09622802231210917. Epub 2023 Nov 8.
6
On the estimation of interval censored destructive negative binomial cure model.
Stat Med. 2023 Dec 10;42(28):5113-5134. doi: 10.1002/sim.9904. Epub 2023 Sep 14.
7
On the integration of decision trees with mixture cure model.
Stat Med. 2023 Oct 15;42(23):4111-4127. doi: 10.1002/sim.9850. Epub 2023 Jul 28.
8
On the parameter estimation of Box-Cox transformation cure model.
Stat Med. 2023 Jul 10;42(15):2600-2618. doi: 10.1002/sim.9739. Epub 2023 Apr 5.
9
10
A time-dependent survival analysis for early prognosis of chronic wounds by monitoring wound alkalinity.
Int Wound J. 2023 May;20(5):1459-1475. doi: 10.1111/iwj.14001. Epub 2022 Nov 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验