Suppr超能文献

决策树与混合治愈模型的整合。

On the integration of decision trees with mixture cure model.

机构信息

Department of Mathematics, University of Texas at Arlington, Arlington, Texas, USA.

出版信息

Stat Med. 2023 Oct 15;42(23):4111-4127. doi: 10.1002/sim.9850. Epub 2023 Jul 28.

Abstract

The mixture cure model is widely used to analyze survival data in the presence of a cured subgroup. Standard logistic regression-based approaches to model the incidence may lead to poor predictive accuracy of cure, specifically when the covariate effect is non-linear. Supervised machine learning techniques can be used as a better classifier than the logistic regression due to their ability to capture non-linear patterns in the data. However, the problem of interpret-ability hangs in the balance due to the trade-off between interpret-ability and predictive accuracy. We propose a new mixture cure model where the incidence part is modeled using a decision tree-based classifier and the proportional hazards structure for the latency part is preserved. The proposed model is very easy to interpret, closely mimics the human decision-making process, and provides flexibility to gauge both linear and non-linear covariate effects. For the estimation of model parameters, we develop an expectation maximization algorithm. A detailed simulation study shows that the proposed model outperforms the logistic regression-based and spline regression-based mixture cure models, both in terms of model fitting and evaluating predictive accuracy. An illustrative example with data from a leukemia study is presented to further support our conclusion.

摘要

混合治愈模型广泛应用于分析存在治愈亚组的生存数据。基于标准逻辑回归的方法来建立发病率模型可能会导致治愈的预测准确性较差,特别是当协变量的影响是非线性的。由于能够捕捉数据中的非线性模式,监督机器学习技术可用作比逻辑回归更好的分类器。然而,由于可解释性和预测准确性之间的权衡,解释性的问题仍然存在。我们提出了一种新的混合治愈模型,其中发病率部分使用基于决策树的分类器建模,而潜伏期部分保留比例风险结构。所提出的模型非常易于解释,紧密模仿了人类的决策过程,并提供了衡量线性和非线性协变量影响的灵活性。对于模型参数的估计,我们开发了期望最大化算法。详细的模拟研究表明,所提出的模型在模型拟合和评估预测准确性方面均优于基于逻辑回归和样条回归的混合治愈模型。通过白血病研究的数据提供了一个说明性的例子,以进一步支持我们的结论。

相似文献

1
On the integration of decision trees with mixture cure model.
Stat Med. 2023 Oct 15;42(23):4111-4127. doi: 10.1002/sim.9850. Epub 2023 Jul 28.
2
A support vector machine-based cure rate model for interval censored data.
Stat Methods Med Res. 2023 Dec;32(12):2405-2422. doi: 10.1177/09622802231210917. Epub 2023 Nov 8.
3
A New Approach to Modeling the Cure Rate in the Presence of Interval Censored Data.
Comput Stat. 2024 Jul;39(5):2743-2769. doi: 10.1007/s00180-023-01389-7. Epub 2023 Jul 15.
4
Partly linear single-index cure models with a nonparametric incidence link function.
Stat Methods Med Res. 2024 Mar;33(3):498-514. doi: 10.1177/09622802241227960. Epub 2024 Feb 23.
5
Estimation method of the semiparametric mixture cure gamma frailty model.
Stat Med. 2008 Nov 10;27(25):5177-94. doi: 10.1002/sim.3358.
6
geecure: An R-package for marginal proportional hazards mixture cure models.
Comput Methods Programs Biomed. 2018 Jul;161:115-124. doi: 10.1016/j.cmpb.2018.04.017. Epub 2018 Apr 17.
7
Change point detection in Cox proportional hazards mixture cure model.
Stat Methods Med Res. 2021 Feb;30(2):440-457. doi: 10.1177/0962280220959118. Epub 2020 Sep 24.
8
A semiparametric mixture model approach for regression analysis of partly interval-censored data with a cured subgroup.
Stat Methods Med Res. 2021 Aug;30(8):1890-1903. doi: 10.1177/09622802211023985. Epub 2021 Jul 1.
9
Functional proportional hazards mixture cure model with applications in cancer mortality in NHANES and post ICU recovery.
Stat Methods Med Res. 2023 Nov;32(11):2254-2269. doi: 10.1177/09622802231206472. Epub 2023 Oct 19.
10
Mixture cure model with random effects for clustered interval-censored survival data.
Stat Med. 2011 Apr 30;30(9):995-1006. doi: 10.1002/sim.4170. Epub 2011 Jan 13.

引用本文的文献

1
A Neural Network Integrated Accelerated Failure Time-Based Mixture Cure Model.
Stat Comput. 2025 Oct;35(5). doi: 10.1007/s11222-025-10674-y. Epub 2025 Jun 22.
2
A New Cure Rate Model with Discrete and Multiple Exposures.
Commun Stat Simul Comput. 2024 Feb 16. doi: 10.1080/03610918.2024.2314664.
3
Likelihood Inference for Unified Transformation Cure Model with Interval Censored Data.
Comput Stat. 2025 Jan;40(1):125-151. doi: 10.1007/s00180-024-01480-7. Epub 2024 Mar 25.
4
Enhancing Cure Rate Analysis Through Integration of Machine Learning Models: A Comparative Study.
Stat Comput. 2024 Aug;34(4). doi: 10.1007/s11222-024-10456-y. Epub 2024 Jun 25.
5
A support vector machine-based cure rate model for interval censored data.
Stat Methods Med Res. 2023 Dec;32(12):2405-2422. doi: 10.1177/09622802231210917. Epub 2023 Nov 8.
6
On the estimation of interval censored destructive negative binomial cure model.
Stat Med. 2023 Dec 10;42(28):5113-5134. doi: 10.1002/sim.9904. Epub 2023 Sep 14.

本文引用的文献

1
2
On a reparameterization of a flexible family of cure models.
Stat Med. 2022 Sep 20;41(21):4091-4111. doi: 10.1002/sim.9498. Epub 2022 Jun 18.
3
Stochastic EM algorithm for generalized exponential cure rate model and an empirical study.
J Appl Stat. 2020 Jun 30;48(12):2112-2135. doi: 10.1080/02664763.2020.1786676. eCollection 2021.
4
A two-way flexible generalized gamma transformation cure rate model.
Stat Med. 2022 Jun 15;41(13):2427-2447. doi: 10.1002/sim.9363. Epub 2022 Mar 8.
6
Promotion time cure rate model with a neural network estimated nonparametric component.
Stat Med. 2021 Jul 10;40(15):3516-3532. doi: 10.1002/sim.8980. Epub 2021 Apr 29.
7
Semiparametric methods for survival data with measurement error under additive hazards cure rate models.
Lifetime Data Anal. 2020 Jul;26(3):421-450. doi: 10.1007/s10985-019-09482-0. Epub 2019 Aug 20.
8
The single-index/Cox mixture cure model.
Biometrics. 2019 Jun;75(2):452-462. doi: 10.1111/biom.12999. Epub 2019 Mar 29.
9
Promotion time cure rate model with nonparametric form of covariate effects.
Stat Med. 2018 May 10;37(10):1625-1635. doi: 10.1002/sim.7597. Epub 2018 Jan 17.
10
Likelihood inference for COM-Poisson cure rate model with interval-censored data and Weibull lifetimes.
Stat Methods Med Res. 2017 Oct;26(5):2093-2113. doi: 10.1177/0962280217708686. Epub 2017 Jun 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验