Suppr超能文献

景观结构、气候变异性和土壤质量塑造了巴伐利亚农业生态系统中的作物生物量模式。

Landscape structure, climate variability, and soil quality shape crop biomass patterns in agricultural ecosystems of Bavaria.

作者信息

Dhillon Maninder Singh, Koellner Thomas, Asam Sarah, Bogenreuther Jakob, Dech Stefan, Gessner Ursula, Gruschwitz Daniel, Annuth Sylvia Helena, Kraus Tanja, Rummler Thomas, Schaefer Christian, Schönbrodt-Stitt Sarah, Steffan-Dewenter Ingolf, Wilde Martina, Ullmann Tobias

机构信息

Department of Remote Sensing, Institute of Geography and Geology, University of Würzburg, Würzburg, Germany.

Department of Ecological Services, Faculty of Biology, Chemistry and Earth Sciences, Bayreuth Center of Ecology and Environmental Research (BayCEER), University of Bayreuth, Bayreuth, Germany.

出版信息

Front Plant Sci. 2025 Aug 7;16:1630087. doi: 10.3389/fpls.2025.1630087. eCollection 2025.

Abstract

Understanding how environmental variability shapes crop biomass is essential for improving yield stability and guiding climate-resilient agriculture. To address this, we compared biomass estimates from a semi-empirical light use efficiency (LUE) model with predictions from a machine learning-remote sensing framework that integrates environmental variables. We applied a combined LUE and random forest (RF) model to estimate the mean biomass of winter wheat and oilseed rape across Bavaria, Germany, from 2001 to 2019. Using a 5 km2 hexagon-based grid, we incorporated landscape metrics (land cover diversity, small woody features), topographic variables (elevation, slope, aspect), soil potential, and seasonal climate predictors (mean and standard deviation of temperature, precipitation, and solar radiation) across the growing season. The RF-based approach improved predictive accuracy over the LUE model alone, particularly for winter wheat. Biomass patterns were shaped by both landscape configuration and climatic conditions. Winter wheat biomass was more influenced by topographic and landscape features, while oilseed rape was more sensitive to solar radiation and soil properties. Moderately diverse landscapes supported higher biomass, whereas an extreme landscape fragmentation or high variability showed lower values. Temperature thresholds, above 21 °C for winter wheat and 12 °C for oilseed rape, were associated with biomass declines, indicating crop-specific sensitivities under Bavarian conditions. This hybrid modeling approach provides a transferable framework to map and understand crop biomass dynamics at scale. The findings offer region-specific insights that can support sustainable agricultural planning in the context of climate change.

摘要

了解环境变异性如何塑造作物生物量对于提高产量稳定性和指导气候适应型农业至关重要。为了解决这个问题,我们将一个半经验性的光能利用效率(LUE)模型的生物量估计值与一个整合了环境变量的机器学习-遥感框架的预测结果进行了比较。我们应用了一个结合LUE和随机森林(RF)的模型来估计2001年至2019年德国巴伐利亚州冬小麦和油菜的平均生物量。使用基于5平方公里六边形的网格,我们纳入了整个生长季节的景观指标(土地覆盖多样性、小木质特征)、地形变量(海拔、坡度、坡向)、土壤潜力和季节性气候预测因子(温度、降水和太阳辐射的平均值和标准差)。基于RF的方法比单独的LUE模型提高了预测准确性,特别是对于冬小麦。生物量模式受到景观格局和气候条件的共同影响。冬小麦生物量受地形和景观特征的影响更大,而油菜对太阳辐射和土壤特性更敏感。中等多样的景观支持更高的生物量,而极端的景观破碎化或高变异性则显示出较低的值。温度阈值,冬小麦高于21°C,油菜高于12°C,与生物量下降有关,表明在巴伐利亚条件下作物具有特定的敏感性。这种混合建模方法提供了一个可转移的框架,用于在大尺度上绘制和理解作物生物量动态。这些发现提供了特定区域的见解,可以支持气候变化背景下的可持续农业规划。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2393/12367677/063a1bdb6fe5/fpls-16-1630087-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验