Suppr超能文献

机器学习与作物模型结合可提高美国玉米带的作物产量预测精度。

Coupling machine learning and crop modeling improves crop yield prediction in the US Corn Belt.

机构信息

Department of Industrial and Manufacturing Systems Engineering, Iowa State University, Ames, IA, USA.

Department of Agronomy, Iowa State University, Ames, IA, USA.

出版信息

Sci Rep. 2021 Jan 15;11(1):1606. doi: 10.1038/s41598-020-80820-1.

Abstract

This study investigates whether coupling crop modeling and machine learning (ML) improves corn yield predictions in the US Corn Belt. The main objectives are to explore whether a hybrid approach (crop modeling + ML) would result in better predictions, investigate which combinations of hybrid models provide the most accurate predictions, and determine the features from the crop modeling that are most effective to be integrated with ML for corn yield prediction. Five ML models (linear regression, LASSO, LightGBM, random forest, and XGBoost) and six ensemble models have been designed to address the research question. The results suggest that adding simulation crop model variables (APSIM) as input features to ML models can decrease yield prediction root mean squared error (RMSE) from 7 to 20%. Furthermore, we investigated partial inclusion of APSIM features in the ML prediction models and we found soil moisture related APSIM variables are most influential on the ML predictions followed by crop-related and phenology-related variables. Finally, based on feature importance measure, it has been observed that simulated APSIM average drought stress and average water table depth during the growing season are the most important APSIM inputs to ML. This result indicates that weather information alone is not sufficient and ML models need more hydrological inputs to make improved yield predictions.

摘要

本研究探讨了作物模型与机器学习(ML)相结合是否能提高美国玉米带的玉米产量预测精度。主要目标是探索混合方法(作物模型+ML)是否会带来更好的预测效果,研究哪些混合模型的组合能提供最准确的预测结果,并确定从作物模型中提取哪些特征与 ML 结合最有利于玉米产量预测。为了解决这个问题,设计了五种 ML 模型(线性回归、LASSO、LightGBM、随机森林和 XGBoost)和六种集成模型。结果表明,将模拟作物模型变量(APSIM)作为输入特征添加到 ML 模型中,可以将产量预测的均方根误差(RMSE)从 7%降低到 20%。此外,我们还研究了在 ML 预测模型中部分纳入 APSIM 特征的情况,发现与土壤湿度相关的 APSIM 变量对 ML 预测的影响最大,其次是与作物和物候相关的变量。最后,根据特征重要性度量,发现模拟的 APSIM 平均干旱胁迫和生长季节的平均地下水位深度是对 ML 最重要的 APSIM 输入。这一结果表明,仅天气信息是不够的,ML 模型需要更多的水文输入才能做出更准确的产量预测。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d496/7810832/b3d896f1ea56/41598_2020_80820_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验