Suppr超能文献

碳酸氢氧化镍钴与叶片基质相互作用的电荷传输动力学及储能意义

Charge transport dynamics and energy storage implications of nickel cobalt carbonate hydroxide interaction with the leaf matrix.

作者信息

Gautam Kajal, Bhatt Mohit, Sagdeo Archna, Singh Hukum, Sinha Anil Kumar

机构信息

Department of Chemistry, School of Advanced Engineering, UPES Dehradun India

Department of Physics, School of Advanced Engineering, UPES Dehradun India

出版信息

Nanoscale Adv. 2025 Aug 1. doi: 10.1039/d5na00651a.

Abstract

Nanomaterial-plant interactions have recently emerged as a promising approach for modulating charge transport and energy storage behavior in living plant tissues. In this study, we report the first-time application of Nickel Cobalt Carbonate Hydroxide (NCCH) nanostructures to modulate the electrical properties of leaves. Uptake of transition metal oxides (TMOs) has enhanced or reduced seed germination, shoot/stem growth, and physiological and biochemical activities. However, NCCH nanoparticles (NPs) show improved redox behaviour compared to TMOs. The presence of CO ions increases the wettability and ion transport. Well-characterized NCCH nanostructures were introduced at varying concentrations (1, 5, and 10 mg L), and their influence on the impedance behavior of the plant was systematically examined. Electrochemical impedance spectroscopy data were modelled using an equivalent circuit comprising a parallel combination of resistance and capacitance for both intracellular (grain) and intercellular (grain boundary) regions of the leaves. The results showed a concentration-dependent increase in resistance and a decrease in capacitance across both domains, highlighting the significant modulation of charge mobility on uptake of NPs. The grain resistance increased from 2.83 Ω (control) to 8.1 Ω (10 mg L) and the grain boundary resistance from 95.9 Ω to 299.74 Ω. Meanwhile, the capacitance decreased from 5.75 × 10 F to 2.15 × 10 F (grain) and from 1.38 × 10 F to 1.79 × 10 F (grain boundary), indicating a lower stored energy density but for a longer time in spiked plants. Jonscher's power law analysis revealed reduced hopping frequencies and altered carrier dynamics, especially in the grain boundary region, where the exponent dropped sharply at low concentrations. Modulus spectroscopy further confirmed the relaxation behavior influenced by NCCH uptake, with distinctive changes in ' and '' profiles reflecting shifts in localized conduction and energy dissipation processes. These findings provide critical insights into the electrical modulation of plant tissues due to the uptake of transition metal nanostructures. This study not only expands the scope of plant nanobionics but also opens potential avenues for understanding the mechanism of plant defence against the toxicity of NPs and sustainable bioelectronics.

摘要

纳米材料与植物的相互作用最近已成为一种有前景的方法,用于调节活植物组织中的电荷传输和能量存储行为。在本研究中,我们报告了首次应用碳酸氢氧化镍钴(NCCH)纳米结构来调节叶片的电学性质。过渡金属氧化物(TMOs)的吸收增强或降低了种子萌发、茎/枝生长以及生理和生化活性。然而,与TMOs相比,NCCH纳米颗粒(NPs)表现出更好的氧化还原行为。CO离子的存在增加了润湿性和离子传输。以不同浓度(1、5和10 mg/L)引入了表征良好的NCCH纳米结构,并系统地研究了它们对植物阻抗行为的影响。使用一个等效电路对电化学阻抗谱数据进行建模,该等效电路由叶片细胞内(颗粒)和细胞间(晶界)区域的电阻和电容并联组合而成。结果表明,两个区域的电阻均呈浓度依赖性增加,电容均降低,突出了纳米颗粒吸收对电荷迁移率的显著调节。颗粒电阻从2.83Ω(对照)增加到8.1Ω(10 mg/L),晶界电阻从95.9Ω增加到299.74Ω。同时,电容从5.75×10F降低到2.15×10F(颗粒),从1.38×10F降低到1.79×10F(晶界),这表明在添加纳米颗粒的植物中储能密度较低,但持续时间较长。琼舍尔幂律分析表明跳跃频率降低,载流子动力学改变,特别是在晶界区域,在低浓度下指数急剧下降。模量谱进一步证实了受NCCH吸收影响的弛豫行为,'和''曲线的明显变化反映了局部传导和能量耗散过程的变化。这些发现为过渡金属纳米结构的吸收对植物组织的电调制提供了关键见解。本研究不仅扩展了植物纳米仿生学的范围,还为理解植物对纳米颗粒毒性的防御机制和可持续生物电子学开辟了潜在途径。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c1ee/12366038/32a032d5fc02/d5na00651a-f1.jpg

相似文献

4
The Black Book of Psychotropic Dosing and Monitoring.
Psychopharmacol Bull. 2024 Jul 8;54(3):8-59.
6
Management of urinary stones by experts in stone disease (ESD 2025).
Arch Ital Urol Androl. 2025 Jun 30;97(2):14085. doi: 10.4081/aiua.2025.14085.
8
Systemic pharmacological treatments for chronic plaque psoriasis: a network meta-analysis.
Cochrane Database Syst Rev. 2020 Jan 9;1(1):CD011535. doi: 10.1002/14651858.CD011535.pub3.
9
Corticosteroids for the treatment of Duchenne muscular dystrophy.
Cochrane Database Syst Rev. 2016 May 5;2016(5):CD003725. doi: 10.1002/14651858.CD003725.pub4.
10
Systemic treatments for metastatic cutaneous melanoma.
Cochrane Database Syst Rev. 2018 Feb 6;2(2):CD011123. doi: 10.1002/14651858.CD011123.pub2.

本文引用的文献

2
Nanomaterials in Agriculture: A Pathway to Enhanced Plant Growth and Abiotic Stress Resistance.
Plants (Basel). 2025 Feb 26;14(5):716. doi: 10.3390/plants14050716.
4
Sensing Technologies for Outdoor/Indoor Farming.
Biosensors (Basel). 2024 Dec 19;14(12):629. doi: 10.3390/bios14120629.
5
Uptake, Translocation, Toxicity, and Impact of Nanoparticles on Plant Physiological Processes.
Plants (Basel). 2024 Nov 7;13(22):3137. doi: 10.3390/plants13223137.
6
Carbon Nanomaterials for Plant Priming through Mechanostimulation: Emphasizing the Role of Shape.
ACS Nano. 2024 Apr 23;18(16):10829-10839. doi: 10.1021/acsnano.4c00557. Epub 2024 Apr 12.
7
High-Temperature Dielectric Relaxation and Electric Conduction Mechanisms in a LaCoO-Modified NaBiTiO System.
ACS Omega. 2023 Jul 7;8(28):25623-25638. doi: 10.1021/acsomega.3c04490. eCollection 2023 Jul 18.
8
Infrared Spectrum Characteristics and Quantification of OH Groups in Coal.
ACS Omega. 2023 May 3;8(19):17064-17076. doi: 10.1021/acsomega.3c01336. eCollection 2023 May 16.
9
Photo-enhanced ionic conductivity across grain boundaries in polycrystalline ceramics.
Nat Mater. 2022 Apr;21(4):438-444. doi: 10.1038/s41563-021-01181-2. Epub 2022 Jan 13.
10
Plant Bioelectronics and Biohybrids: The Growing Contribution of Organic Electronic and Carbon-Based Materials.
Chem Rev. 2022 Feb 23;122(4):4847-4883. doi: 10.1021/acs.chemrev.1c00525. Epub 2021 Dec 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验