Suppr超能文献

闭环优化杂芳基 Suzuki-Miyaura 偶联的一般反应条件。

Closed-loop optimization of general reaction conditions for heteroaryl Suzuki-Miyaura coupling.

机构信息

Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA.

Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.

出版信息

Science. 2022 Oct 28;378(6618):399-405. doi: 10.1126/science.adc8743. Epub 2022 Oct 27.

Abstract

General conditions for organic reactions are important but rare, and efforts to identify them usually consider only narrow regions of chemical space. Discovering more general reaction conditions requires considering vast regions of chemical space derived from a large matrix of substrates crossed with a high-dimensional matrix of reaction conditions, rendering exhaustive experimentation impractical. Here, we report a simple closed-loop workflow that leverages data-guided matrix down-selection, uncertainty-minimizing machine learning, and robotic experimentation to discover general reaction conditions. Application to the challenging and consequential problem of heteroaryl Suzuki-Miyaura cross-coupling identified conditions that double the average yield relative to a widely used benchmark that was previously developed using traditional approaches. This study provides a practical road map for solving multidimensional chemical optimization problems with large search spaces.

摘要

有机反应的一般条件很重要,但却很少见,因此人们通常在识别这些条件时只考虑化学空间的狭窄区域。要发现更普遍的反应条件,就需要考虑从大量基质与高维反应条件矩阵交叉衍生出的广阔化学空间,这使得穷举实验变得不切实际。在这里,我们报告了一种简单的闭环工作流程,该流程利用数据引导的矩阵降选、最小化不确定性的机器学习以及机器人实验来发现通用反应条件。将其应用于具有挑战性且影响深远的杂芳基 Suzuki-Miyaura 交叉偶联问题,确定了与先前使用传统方法开发的广泛使用的基准相比,可将平均产率提高一倍的条件。这项研究为解决具有大型搜索空间的多维化学优化问题提供了实用的路线图。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验