Wen Qing, Hao Taixu, Chen Tian, Le Dinghao, Yang Pei, Chen Hezhang, Tang Linbo, Wu Qing, Zhang Xiahui, Zheng Junchao
School of Metallurgy and Environment, Central South University Changsha 410083 China
Engineering Research Center of the Ministry of Education for Advanced Battery Materials, Central South University Changsha 410083 China.
Chem Sci. 2025 Aug 13. doi: 10.1039/d5sc04875c.
Aqueous zinc-ion batteries have demonstrated great potential for large-scale energy storage, but still suffer from severe dendrites and corrosion problems. Uneven distributions of crystalline planes and passivation layers on the zinc anode are the key factors causing dendrites and corrosion. However, the synergistic construction of uniform crystal planes and shielding layers is still challenging. Herein, we propose a novel leveling-shielding dual strategy to stabilize the zinc anode. The low-melting-point indium (In) layer not only serves as a leveling agent to repair surface defects, but also induces uniform and fast deposition of zinc by exposing a single (101) plane on the anode. Besides, the outer ZnF shielding layer can inhibit corrosion and accelerate the de-solvation of Zn(HO) , which improves the electrochemical reaction kinetics. As a result, the ZnF@In@Zn symmetric cell shows an ultra-low interfacial impedance of <10 Ω and a stable cycle life of >2800 h with a low polarization voltage of 21.8 mV at 5 mA cm and 2 mAh cm, compared with bare Zn (140 h and 75.8 mV). Besides, the ZnF@In@Zn//NHVO full cell maintains a high capacity of 112.4 mAh g with a retention rate of 79.5% after 10 000 cycles at 3 A g. This work provides a novel, effective leveling-shielding dual strategy for interfacial modification of zinc anodes, which can also be applied in other metal anodes.
水系锌离子电池在大规模储能方面展现出了巨大潜力,但仍面临严重的枝晶和腐蚀问题。锌阳极上晶面和钝化层的不均匀分布是导致枝晶和腐蚀的关键因素。然而,协同构建均匀晶面和屏蔽层仍具有挑战性。在此,我们提出一种新颖的整平-屏蔽双策略来稳定锌阳极。低熔点铟(In)层不仅作为整平剂修复表面缺陷,还通过在阳极上暴露单一的(101)面诱导锌均匀快速沉积。此外,外部的ZnF屏蔽层可以抑制腐蚀并加速Zn(HO)的去溶剂化,从而改善电化学反应动力学。结果,与裸锌(140小时和75.8毫伏)相比,ZnF@In@Zn对称电池在5毫安每平方厘米和2毫安时每平方厘米的条件下,表现出<10Ω的超低界面阻抗和>2800小时的稳定循环寿命,极化电压低至21.8毫伏。此外,ZnF@In@Zn//NHVO全电池在3安每克的电流密度下循环10000次后,仍保持112.4毫安每克的高容量,保留率为79.5%。这项工作为锌阳极的界面改性提供了一种新颖、有效的整平-屏蔽双策略,该策略也可应用于其他金属阳极。